Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T19:48:31.379Z Has data issue: false hasContentIssue false

Argon physisorption for pore analysis of mudrocks, clays, and engineered analogues: is argon a better choice than nitrogen and carbon dioxide?

Published online by Cambridge University Press:  10 January 2025

Timo Seemann*
Affiliation:
RWTH Aachen University, Clay and Interface Mineralogy, Bunsenstr. 8, 52072 Aachen, Germany Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hannover, Germany
Christian Weber
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hannover, Germany
Pieter Bertier
Affiliation:
Dynchem Scientific Instruments, Kronprinzenstr. 5, 52066, Aachen, Germany
Hannes Claes
Affiliation:
Earth and Environmental Sciences, KU Leuven University, Celestijnenlaan 200E, 3001 Heverlee, Belgium
Helge Stanjek
Affiliation:
RWTH Aachen University, Clay and Interface Mineralogy, Bunsenstr. 8, 52072 Aachen, Germany
*
Corresponding author: Timo Seemann; Email: timo.seemann@emr.rwth-aachen.com

Abstract

Argon physisorption at 87 K is the new standard for texture analysis of microporous media recommended by the International Union of Pure and Applied Chemistry (IUPAC). However, geoscientists routinely use nitrogen (77 K) and carbon dioxide (273 K), both molecules with permanent polarization and the preference to interact with specific surface sites. In this work, N2, CO2, and Ar physisorption isotherms were measured and classical physisorption theories applied to investigate the suitability of Ar physisorption for the porosity assessment of mudrocks, clays, and (non)-porous analogs.

N2 and Ar physisorption isotherms are qualitatively similar with the most significant discrepancies in the submonolayer range. Textural parameters reveal linear relations but parameter ratios vary randomly, independent of the sorbent class. While N2 and CO2 (mostly) underestimate micropore volumes, nitrogen BET areas are consistently larger than argon BET areas. Those differences are probably associated with differences in polarization. But its effect on molecular orientation, for example, is presumably masked by microporosity and a narrow spacing of specific surface sites.

Mesopore size distributions and Gurvich (total) pore volumes agree well for N2 and Ar indicating similar pore size and pore volume access. Combining both parameters proves effective in identifying saturation pressure offsets which pose the largest uncertainty factor in the present study. Ar-based micropore size distributions reveal three distinct classes of mudrocks differing in organic matter maturity, and its contribution to microporosity. Empirical αs plots corroborate this classification underlining the discrepancies in the micropore range of mudrocks. Comparative hysteresis loop analysis indicated cavitation as one dominant evaporation mechanism in mudrocks and clays effecting a sample-specific compartmentalization of their pore networks.

Type
Original Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amann-Hildenbrand, A., Krooss, B. M., Bertier, P., & Busch, A. (2015). Laboratory testing procedure for CO2 capillary entry pressures on caprocks. In Gerdes, K. F. (Ed.), Carbon Dioxide Capture for Storage in Deep Geological Formations (pp. 355384, Vol. 4). CPL Press, Berkshire, UK.Google Scholar
Anovitz, L. M., & Cole, D. R. (2015). Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80 (1), 61164. https://doi.org/10.2138/rmg.2015.80.04CrossRefGoogle Scholar
Bai, J., Kang, Y., Chen, M., Chen, Z., You, L., Li, X., & Chen, G. (2020). Impact of surface chemistry and pore structure on water vapor adsorption behavior in gas shale. Chemical Engineering Journal, 402, 126238. https://doi.org/10.1016/j.cej.2020.126238CrossRefGoogle Scholar
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73 (1), 373380. https://doi.org/10.1021/ja01145a126CrossRefGoogle Scholar
Bertier, P., Schweinar, K., Stanjek, H., Ghanizadeh, A., Clarkson, C. R., Busch, A., Kampman, N., Prinz, D., Amann-Hildebrand, A., Krooss, B. M., & Pipich, V. (2016, March). On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. In: Filling the Gaps – from Microscopic Pore Structures to Transport Properties in Shales (pp. 151161, Vol. 21). The Clay Minerals Society. https://doi.org/10.1346/CMS-WLS-21.12Google Scholar
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60 (2), 309319.CrossRefGoogle Scholar
Busch, A., Bertier, P., Gensterblum, Y., Rother, G., Spiers, C. J., Zhang, M., & Wentinck, H. M. (2016). On sorption and swelling of CO2 in clays. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2 (2), 111130. https://doi.org/10.1007/s40948-016-0024-4CrossRefGoogle Scholar
Busch, A., Schweinar, K., Kampman, N., Coorn, A., Pipich, V., Feoktystov, A., Leu, L., Amann-Hildenbrand, A., & Bertier, P. (2017). Determining the porosity of mudrocks using methodological pluralism. Geological Society, London, Special Publications, 454 (1), 1538. https://doi.org/10.1144/SP454.1CrossRefGoogle Scholar
Cazorla-Amorós, D., Alcañiz-Monge, J., de la Casa-Lillo, M. A., & Linares-Solano, A. (1998). CO2 As an Adsorptive to Characterize Carbon Molecular Sieves and Activated Carbons. Langmuir, 14(16), 45894596. https://doi.org/10.1021/la980198pCrossRefGoogle Scholar
Chalmers, G. R., & Bustin, R. M. (2008). Lower cretaceous gas shales in northeastern British Columbia, part i: Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 56(1), 121. https://doi.org/10.2113/gscpgbull.56.1.1CrossRefGoogle Scholar
Chen, F., Liu, D., Ding, X., Zheng, Q., & Lu, S. (2022). Pore size distributions contributed by various components in the Upper Ordovician Wufeng Shale from Southeast Chongqing, China. Journal of Petroleum Science and Engineering, 208, 109230. https://doi.org/10.1016/j.petrol.2021.109230CrossRefGoogle Scholar
Chen, J., & Xiao, X. (2014). Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel, 129, 173181. https://doi.org/10.1016/j.fuel.2014.03.058CrossRefGoogle Scholar
Chen, J., Gai, H., & Xiao, Q. (2021). Effects of composition and temperature on water sorption in overmature Wufeng-Longmaxi shales. International Journal of Coal Geology, 234, 103673. https://doi.org/10.1016/j.coal.2020.103673CrossRefGoogle Scholar
Choma, J., Górka, J., & Jaroniec, M. (2008). Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. Microporous and Mesoporous Materials, 112 (1-3), 573579. https://doi.org/10.1016/j.micromeso.2007.10.039CrossRefGoogle Scholar
Cimino, R., Cychosz, K. A., Thommes, M., & Neimark, A. V. (2013). Experimental and theoretical studies of scanning adsorption–desorption isotherms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 437, 7689. https://doi.org/10.1016/j.colsurfa.2013.03.025CrossRefGoogle Scholar
Clarkson, C., & Haghshenas, B. (2016). Characterization of multi-fractured horizontal shale wells using drill cuttings: 1. Fluid-in-place estimation. Journal of Natural Gas Science and Engineering, 32, 574585. https://doi.org/10.1016/j.jngse.2016.02.056CrossRefGoogle Scholar
Clarkson, C., Freeman, M., He, L., Agamalian, M., Melnichenko, Y., Mastalerz, M., Bustin, R., Radliński, A., & Blach, T. (2012). Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 95, 371385. https://doi.org/10.1016/j.fuel.2011.12.010CrossRefGoogle Scholar
Clarkson, C., Solano, N., Bustin, R., Bustin, A., Chalmers, G., He, L., Melnichenko, Y., Radliński, A., & Blach, T. (2013). Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606616. https://doi.org/10.1016/j.fuel.2012.06.119CrossRefGoogle Scholar
Clarkson, C. R., & Solano, N. A. (2016). Combined use of neutron-scattering, fluid-invasion, and image-analysis techniques to assess pore structure, accessibility, and connectivity in tight rock. In Filling the Gaps – from Microscopic Pore Structures to Transport Properties in Shales (pp. 1531). The Clay Minerals Society. https://doi.org/10.1346/CMS-WLS-21.2CrossRefGoogle Scholar
Cychosz, K. A., Guillet-Nicolas, R., García-Martínez, J., & Thommes, M. (2017). Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 46 (2), 389414. https://doi.org/10.1039/C6CS00391ECrossRefGoogle ScholarPubMed
Delle Piane, C., Ansari, H., Li, Z., Mata, J., Rickard, W., Pini, R., Dewhurst, D. N., & Sherwood, N. (2022). Influence of organic matter type on porosity development in the Wufeng-Longmaxi Shale: A combined microscopy, neutron scattering and physisorption approach. International Journal of Coal Geology, 249, 103880. https://doi.org/10.1016/j.coal.2021.103880CrossRefGoogle Scholar
DENKA (2023). Fused Silica (DF) Spherical (FB, FBX). Denka, Japan.Google Scholar
Deutsche Institut für Normung e.V. (2012). Bestimmung der spezifischen Oberfläche von Festkörpern mittels Gasadsorption - BET-Verfahren (DIN ISO 9277:2010). https://doi.org/10.31030/2066286CrossRefGoogle Scholar
Dobruskin, V. K. (1998). Micropore Volume Filling. A Condensation Approximation Approach as a Foundation to the Dubinin-Astakhov Equation. Langmuir, 14(14), 38403846. https://doi.org/10.1021/la9712101CrossRefGoogle Scholar
Drain, L.E. (1953). Permanent electric quadrupole moments of molecules and heats of adsorption. Transactions of the Faraday Society, 49, 650654.CrossRefGoogle Scholar
Dubinin, M. (1975). Physical adsorption of gases and vapors in micropores. In Cadenhead, D., Danielli, J., & Rosenberg, M. (Eds.), Progress in Surface and Membrane Science (pp. 170, Vol. 9). Elsevier. https://doi.org/10.1016/B978-0-12-571809-7.50006-1Google Scholar
Dubinin, M., & Astakhov, V. (1971). Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents-Communication 1. Carbon adsorbents. Bulletin of the Academy of Sciences of the USSR. Division of Chemical Sciences, 20(1), 37.Google Scholar
Dudek, L. (2016). Pore size distribution in shale gas deposits based on adsorption isotherm analyses. Nafta-Gaz, 8, 603609. https://doi.org/10.18668/NG.2016.08.03CrossRefGoogle Scholar
Everett, D. H., & Powl, J. C. (1976). Adsorption in slit-like and cylindrical micropores in the henry’s law region. A model for the microporosity of carbons. Journal of the Chemical Society, Faraday Transactions, 72, 619636. https://doi.org/10.1039/F19767200619CrossRefGoogle Scholar
Feng, D., Wu, K., Bakhshian, S., Hosseini, S. A., Li, J., & Li, X. (2020). Nanoconfinement Effect on Surface Tension: Perspectives from Molecular Potential Theory. Langmuir, 36(30), 87648776. https://doi.org/10.1021/acs.langmuir.0c01050CrossRefGoogle ScholarPubMed
Fernandez-Colinas, J., Denoyel, R., Grillet, Y., Rouquerol, F., & Rouquerol, J. (1989a). Significance of nitrogen and argon adsorption data for following the pore structure modifications of a charcoal during activation. Langmuir: the ACS Journal of Surfaces and Colloids, 5(5), 12051210. https://doi.org/10.1021/la00089a014CrossRefGoogle Scholar
Fernandez-Colinas, J., Denoyel, R., & Rouquerol, J. (1989b). Adsorption of iodine from aqueous solutions on to activated carbons: Correlation with nitrogen adsorption at 77K. Adsorption Science & Technology, 6(1), 1826. https://doi.org/10.1177/026361748900600103CrossRefGoogle Scholar
Fink, R., Krooss, B. M., Gensterblum, Y., & Amann-Hildenbrand, A. (2017). Apparent permeability of gas shales – Superposition of fluid-dynamic and poro-elastic effects. Fuel, 199, 532550. https://doi.org/10.1016/j.fuel.2017.02.086CrossRefGoogle Scholar
Fink, R., Amann-Hildenbrand, A., Bertier, P., & Littke, R. (2018). Pore structure, gas storage and matrix transport characteristics of lacustrine Newark shale. Marine and Petroleum Geology, 97, 525539. https://doi.org/10.1016/j.marpetgeo.2018.06.035CrossRefGoogle Scholar
Furmann, A., Mastalerz, M., Bish, D., Schimmelmann, A., & Pedersen, P. K. (2016). Porosity and pore size distribution in mudrocks from the Belle Fourche and Second White Specks Formations in Alberta, Canada. AAPG Bulletin, 100(08), 12651288. https://doi.org/10.1306/02191615118CrossRefGoogle Scholar
Groen, J. C., Peffer, L. A., & Pérez-Ramírez, J. (2003). Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 60(1-3), 117. https://doi.org/10.1016/S1387-1811(03)00339-1CrossRefGoogle Scholar
Grosman, A., & Ortega, C. (2008). Capillary Condensation in Porous Materials. Hysteresis and In1 teraction Mechanism without Pore Blocking/Percolation Process. Langmuir, 24(8), 39773986. https://doi.org/10.1021/la703978vCrossRefGoogle Scholar
Gurvich, L.G. (1915). Acerca de la fuerza de atracción fisicoquímica. Journal of Russian Physical and Chemical Society, 47, 805–27.Google Scholar
Harkins, W. D., & Jura, G. (1944). Surfaces of Solids. XIII. A Vapor Adsorption Method for the Determination of the Area of a Solid without the Assumption of a Molecular Area, and the Areas Occupied by Nitrogen and Other Molecules on the Surface of a Solid. Journal of the American Chemical Society, 66(8), 13661373. https://doi.org/10.1021/ja01236a048CrossRefGoogle Scholar
Hartmann, M., & Vinu, A. (2002). Mechanical Stability and Porosity Analysis of Large-Pore SBA-15 Mesoporous Molecular Sieves by Mercury Porosimetry and Organics Adsorption. Langmuir, 18(21), 80108016. https://doi.org/10.1021/la025782jCrossRefGoogle Scholar
HEGLA boraident GmbH (2013). Porous glass membranes (VYCOR). Boraident GmbH, Germany.Google Scholar
Holmes, R., Rupp, E. C., Vishal, V., & Wilcox, J. (2015). Characterization and Adsorption Investigations of the Nanostructure of Gas Shales. Day 1 Tue, October 27, 2015, D011S003R002. https://doi.org/10.4043/26192-MSCrossRefGoogle Scholar
Holmes, R., Aljamaan, H., Vishal, V., Wilcox, J., & Kovscek, A. R. (2019). Idealized Shale Sorption Isotherm Measurements to Determine Pore Capacity, Pore Size Distribution, and Surface Area. Energy & Fuels, 33(2), 665676. https://doi.org/10.1021/acs.energyfuels.8b02726CrossRefGoogle Scholar
Hu, Z., Gaus, G., Seemann, T., Zhang, Q., Littke, R., & Fink, R. (2021). Pore structure and sorption capacity investigations of Ediacaran and Lower Silurian gas shales from the Upper Yangtze platform, China. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(3), 126.CrossRefGoogle Scholar
Jacops, E., Phung, Q. T., Frederickx, L., & Levasseur, S. (2021). Diffusive Transport of Dissolved Gases in Potential Concretes for Nuclear Waste Disposal. Sustainability, 13(18), 10007. https://doi.org/10.3390/su131810007CrossRefGoogle Scholar
Janssen, M., & Van Oorschot, C. (1989). The Characterization of Zeolites by Gas Adsorption. In Studies in Surface Science and Catalysis (pp. 633642, Vol. 49). Elsevier. https://doi.org/10.1016/S0167-2991(08)61761-9Google Scholar
Jaroniec, M., & Kaneko, K. (1997). Physicochemical Foundations for Characterization of Adsorbents by Using High-Resolution Comparative Plots. Langmuir, 13 (24), 65896596. https://doi.org/10.1021/la970771pCrossRefGoogle Scholar
Jaroniec, M., Kruk, M., & Olivier, J. P. (1999). Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas. Langmuir, 15(16), 54105413. https://doi.org/10.1021/la990136eCrossRefGoogle Scholar
Jelinek, L., & Kovats, E. (1994). True Surface Areas from Nitrogen Adsorption Experiments. Langmuir, 10(11), 42254231. https://doi.org/10.1021/la00023a051CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S., & Ufer, K. (2010). N2-BET specific surface area of bentonites. Journal of Colloid and Interface Science, 349(1), 275282.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer, K., Kleeberg, R., & Stanjek, H. (2011). Termination of swelling capacity of smectites by Cutrien exchange. Clay Minerals, 46(3), 411420. https://doi.org/10.1180/claymin.2011.046.3.411CrossRefGoogle Scholar
Klank, D. (2021). Adsorption studies of porous and nonporous materials with various adsorptives in the entire temperature range from 77 K up to 323 K. Partikelwelt 14, (Yellow Paper 2-1), 17.Google Scholar
Klobes, P., Meyer, K., & Munro, R. G. (2006). Porosity and specific surface area measurements for solid materials. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, Maryland, USA. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=854263.Google Scholar
KMI-Industrial-Materials (2022). Muscovite HLM3. KMI Industrial Materials.Google Scholar
KMI-Instrudrial-Minerals (2023). Eisenglimmer MIOX. KMI Industrial Materials.Google Scholar
Kruk, M., & Jaroniec, M. (2000). Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials. Chemistry of Materials, 12(1), 222230. https://doi.org/10.1021/cm9905601CrossRefGoogle Scholar
Kruk, M., Jaroniec, M., & Choma, J. (1997). Critical discussion of simple adsorption methods used to evaluate the micropore size distribution. Adsorption, 3(3), 209219. https://doi.org/10.1007/BF01650132CrossRefGoogle Scholar
Kuila, U., & Prasad, M. (2013). Application of nitrogen gas-adsorption technique for characterization of pore structure of mudrocks. The Leading Edge, 32(12), 14781485. https://doi.org/10.1190/tle32121478.1CrossRefGoogle Scholar
Kuila, U., McCarty, D. K., Derkowski, A., Fischer, T. B., Topór, T., & Prasad, M. (2014). Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel, 135, 359373. https://doi.org/10.1016/j.fuel.2014.06.036CrossRefGoogle Scholar
Kuligiewicz, A., & Derkowski, A. (2017). Tightly bound water in smectites. American Mineralogist, 102(5), 10731090. https://doi.org/10.2138/am-2017-5918CrossRefGoogle Scholar
Küster, D., Kaufhold, S., Limam, E., Jatlaoui, O., Ba, O., Mohamed, A. M. Z., Pohlmann-Lortz, M., Ranneberg, M., & Ufer, K. (2021). Investigation of unexplored kaolin occurrences in southern Mauritania and preliminary assessment of possible applications. Clay Minerals, 56(2), 126139. https://doi.org/10.1180/clm.2021.26CrossRefGoogle Scholar
Lahn, L., Bertier, P., Seemann, T., & Stanjek, H. (2020). Distribution of sorbed water in the pore network of mudstones assessed from physisorption measurements. Microporous and Mesoporous Materials, 295, 109902. https://doi.org/10.1016/j.micromeso.2019.109902CrossRefGoogle Scholar
Li, J., Yin, J., Zhang, Y., Lu, S., Wang, W., Li, J., Chen, F., & Meng, Y. (2015). A comparison of experimental methods for describing shale pore features — A case study in the Bohai Bay Basin of eastern China. International Journal of Coal Geology, 152, 3949. https://doi.org/10.1016/j.coal.2015.10.009CrossRefGoogle Scholar
Li, J., Wu, K., Chen, Z., Wang, W., Yang, B., Wang, K., Luo, J., & Yu, R. (2019). Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems. Applied Energy, 251, 113368. https://doi.org/10.1016/j.apenergy.2019.113368CrossRefGoogle Scholar
Loganathan, N., Bowers, G. M., Yazaydin, A. O., Schaef, H. T., Loring, J. S., Kalinichev, A. G., & Kirkpatrick, R. J. (2018). Clay Swelling in Dry Supercritical Carbon Dioxide: Effects of Interlayer Cations on the Structure, Dynamics, and Energetics of CO2 Intercalation Probed by XRD, NMR, and GCMD Simulations. The Journal of Physical Chemistry C, 122(8), 43914402. https://doi.org/10.1021/acs.jpcc.7b12270CrossRefGoogle Scholar
Lowell, S., Shields, J. E., Thomas, M. A., & Thommes, M. (2006). Characterization of porous solids and powders: Surface area, pore size and density (Vol. 16). Springer Science & Business Media.Google Scholar
Mastalerz, M., He, L., Melnichenko, Y. B., & Rupp, J. A. (2012). Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/ USANS Techniques. Energy Fuels, 12.Google Scholar
Mastalerz, M., Schimmelmann, A., Drobniak, A., & Chen, Y. (2013). Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 97(10), 16211643.CrossRefGoogle Scholar
McKee, D. W. (1959). The sorption of hydrocarbon vapors by silica gel. The Journal of Physical Chemistry, 63(8), 12561259. https://doi.org/10.1021/j150578a010CrossRefGoogle Scholar
Medek, J. (1977). Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel, 56(2), 131133. https://doi.org/10.1016/0016-2361(77)90131-4CrossRefGoogle Scholar
Medina-Rodriguez, B. X., & Alvarado, V. (2021). Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization. Energies, 14(10), 2880. https://doi.org/10.3390/en14102880CrossRefGoogle Scholar
Merkel, A., Fink, R., & Littke, R. (2015). The role of pre-adsorbed water on methane sorption capacity of Bossier and Haynesville shales. International Journal of Coal Geology, 147–148, 18. https://doi.org/10.1016/j.coal.2015.06.003CrossRefGoogle Scholar
Michot, L. J. (2018). Determination of surface areas and textural properties of clay minerals. In: Developments in Clay Science (pp. 2347, Vol. 9). Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-102432-4.00002-0Google Scholar
Micromeritics Instrument Corporation (2012). SiAl-pellets datasheet (Datasheet No. Lot:A-501-49).Google Scholar
Neimark, A. V., Ravikovitch, P. I., Grün, M., Schüth, F., & Unger, K. K. (1998). Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption. Journal of Colloid and Interface Science, 207(1), 159169. https://doi.org/10.1006/jcis.1998.5748CrossRefGoogle ScholarPubMed
Nguyen, P. T. M., Do, D. D., & Nicholson, D. (2011). On The Cavitation and Pore Blocking in Cylindrical Pores with Simple Connectivity. The Journal of Physical Chemistry B, 115(42), 1216012172. https://doi.org/10.1021/jp2068304CrossRefGoogle ScholarPubMed
Payne, D., Sing, K., & Turk, D. (1973). Comparison of argon and nitrogen adsorption isotherms on porous and nonporous hydroxylated silica. Journal of Colloid and Interface Science, 43(2), 287293. https://doi.org/10.1016/0021-9797(73)90376-7CrossRefGoogle Scholar
Psarras, P., Holmes, R., Vishal, V., & Wilcox, J. (2017). Methane and CO2 adsorption capacities of kerogen in the Eagle Ford shale from molecular simulation. Accounts of Chemical Research, 50 (8), 18181828. https://doi.org/10.1021/acs.accounts.7b00003CrossRefGoogle ScholarPubMed
Qi, Y., Ju, Y., Cai, J., Gao, Y., Zhu, H., Hunag, C., Wu, J., Meng, S., & Chen, W. (2019). The effects of solvent extraction on nanoporosity of marine-continental coal and mudstone. Fuel, 235, 7284. https://doi.org/10.1016/j.fuel.2018.07.083CrossRefGoogle Scholar
Rathouský, J., & Thommes, M. (2007). Adsorption properties and advanced textural characterization of novel micro/mesoporous zeolites. In Studies in Surface Science and Catalysis (pp. 10421047, Vol. 170). Elsevier. https://doi.org/10.1016/S0167-2991(07)80958-XGoogle Scholar
Reichenbach, C., & Klank, D. (2014). Vollautomatisierte Adsorptionsvolumetrie bei variablen Messtem1 peraturen Teil 1: Untersuchungen von Sorptions-phänomenen in Zeolithe. Partikelwelt 15, 1721.Google Scholar
Ross, D. J., & Bustin, M. R. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916927. https://doi.org/10.1016/j.marpetgeo.2008.06.004CrossRefGoogle Scholar
Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P. L., & Maurin, G. (2014). Adsorption by powders and porous solids: Principles, methodology and applications (Second edition). Elsevier/AP.Google Scholar
Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? In: Studies in Surface Science and Catalysis (pp. 4956, Vol. 160). Elsevier. https://doi.org/10.1016/S0167-2991(07)80008-5Google Scholar
Schlumberger, C., & Thommes, M. (2021). Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Advanced Materials Interfaces, 8(4), 2002181. https://doi.org/10.1002/admi.202002181CrossRefGoogle Scholar
Schoen, M., & Thommes, M. (1995). Microscopic structure of a pure near-critical fluid confined to a mesoscopic slit-pore. Physical Review E, 52(6), 63756386. https://doi.org/10.1103/PhysRevE.52.6375CrossRefGoogle ScholarPubMed
Schoen, M., Thommes, M., & Findenegg, G. H. (1997). Aspects of sorption and phase behavior of near-critical fluids confined to mesoporous media. The Journal of Chemical Physics, 107(8), 32623266. https://doi.org/10.1063/1.474707CrossRefGoogle Scholar
Seemann, T., Bertier, P., Krooss, B. M., & Stanjek, H. (2017). Water vapour sorption on mudrocks. Geological Society, London, Special Publications, 454(1), 201233. https://doi.org/10.1144/SP454.8CrossRefGoogle Scholar
Shabani, M., Krooss, B. M., Hallenberger, M., Amann-Hildenbrand, A., Fink, R., & Littke, R. (2020). Petrophysical characterization of low-permeable carbonaceous rocks: Comparison of different experimental methods. Marine and Petroleum Geology, 122, 104658. https://doi.org/10.1016/j.marpetgeo.2020.104658CrossRefGoogle Scholar
Silvestre-Albero, J., Silvestre-Albero, A. M., Llewellyn, P. L., & Rodríguez-Reinoso, F. (2013). High-Resolution N2 Adsorption Isotherms at 77.4 K: Critical Effect of the He used during calibration. The Journal of Physical Chemistry C, 117(33), 1688516889. https://doi.org/10.1021/jp405719aCrossRefGoogle Scholar
Sing, K. S., & Williams, R. T. (2005). Empirical Procedures for the Analysis of Physisorption Isotherms. Adsorption Science & Technology, 23(10), 839853. https://doi.org/10.1260/026361705777641990CrossRefGoogle Scholar
Sircar, S. (2006). Basic research needs for design of adsorptive gas separation processes. Industrial & Engineering Chemistry Research, 45(16), 54355448. https://doi.org/10.1021/ie051056aCrossRefGoogle Scholar
Śolcová, O., Matĕjová, L., Topka, P., Musilová, Z., & Schneider, P. (2011). Comparison of textural information from argon(87 K) and nitrogen(77 K) physisorption. Journal of Porous Materials, 18(5), 557565. https://doi.org/10.1007/s10934-010-9409-xCrossRefGoogle Scholar
Song, Y., Davy, C., Bertier, P., Skoczylas, F., & Talandier, J. (2017). On the porosity of COx claystone by gas injection. Microporous and Mesoporous Materials, 239, 272286. https://doi.org/10.1016/j.micromeso.2016.10.017CrossRefGoogle Scholar
Sonwane, C. G., & Bhatia, S. K. (2000). Characterization of pore size distributions of mesoporous materials from adsorption isotherms. The Journal of Physical Chemistry B, 104(39), 90999110. https://doi.org/10.1021/jp000907jCrossRefGoogle Scholar
Sotomayor, F. J., Cychosz, K. A., & Thommes, M. (2018). Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Accounts of Materials and Surface Research, 17(3), 3450.Google Scholar
Środoń, J., & McCarty, D. K. (2008). Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements. Clays and Clay Minerals, 56(2), 155174. https://doi.org/10.1346/CCMN.2008.0560203CrossRefGoogle Scholar
Thommes, M. (2004). Physical Adsorption Characterization of Ordered and Amorphous Mesoporous Material. In: Series on Chemical Engineering (pp. 317364, Vol. 4). Published by Imperial College Press and Distributed by World Scientific Publishing Co. https://doi.org/10.1142/9781860946561_0011Google Scholar
Thommes, M. (2007). Chapter 15 - Textural Characterization of Zeolites and Ordered Mesoporous Materials by Physical Adsorption. In: Čejka, J., van Bekkum, H., Corma, A., & Schüth, F. (Eds.), Introduction to Zeolite Science and Practice (pp. 495–XIII, Vol. 168). Elsevier. https://doi.org/10.1016/S0167-2991(07)80803-2CrossRefGoogle Scholar
Thommes, M., & Cychosz, K. A. (2014). Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption, 20(2-3), 233250. https://doi.org/10.1007/s10450-014-9606-zCrossRefGoogle Scholar
Thommes, M., & Findenegg, G. H. (1994). Pore Condensation and Critical-Point Shift of a Fluid in Controlled-Pore Glass. Langmuir, 10(11), 42704277. https://doi.org/10.1021/la00023a058CrossRefGoogle Scholar
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 10511069. https://doi.org/10.1515/pac-2014-1117CrossRefGoogle Scholar
Thommes, M., Köhn, R., & Fröba, M. (2002a). Characterization of mesoporous solids: Pore condensation and sorption hysteresis phenomena in mesoporous molecular sieves. In: Studies in Surface Science and Catalysis (pp. 16951702, Vol. 142). Elsevier. https://doi.org/10.1016/S0167-2991(02)80342-1Google Scholar
Thommes, M., Köhn, R., & Fröba, M. (2002b). Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Applied Surface Science, 196 (1-4), 239249. https://doi.org/10.1016/S0169-4332(02)00062-4CrossRefGoogle Scholar
Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P. I., & Neimark, A. V. (2006). Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas. Langmuir, 22(2), 756764. https://doi.org/10.1021/la051686hCrossRefGoogle ScholarPubMed
Thommes, M., Mitchell, S., & Pérez-Ramírez, J. (2012). Surface and Pore Structure Assessment of Hierarchical MFI Zeolites by Advanced Water and Argon Sorption Studies. The Journal of Physical Chemistry C, 116(35), 1881618823. https://doi.org/10.1021/jp3051214CrossRefGoogle Scholar
Thommes, M., Morell, J., Cychosz, K. A., & Fröba, M. (2013). Combining Nitrogen, Argon, and Water Adsorption for Advanced Characterization of Ordered Mesoporous Carbons (CMKs) and Periodic Mesoporous Organosilicas (PMOs). Langmuir, 29(48), 1489314902. https://doi.org/10.1021/la402832bCrossRefGoogle ScholarPubMed
Vranjes-Wessely, S., Misch, D., Issa, I., Kiener, D., Fink, R., Seemann, T., Liu, B., Rantitsch, G., & Sachsenhofer, R. (2020). Nanoscale pore structure of Carboniferous coals from the Ukrainian Donets Basin: A combined HRTEM and gas sorption study. International Journal of Coal Geology, 224, 103484. https://doi.org/10.1016/j.coal.2020.103484CrossRefGoogle Scholar
Wang, G., & Ju, Y. (2015). Organic shale micropore and mesopore structure characterization by ultra-low pressure N2 physisorption: Experimental procedure and interpretation model. Journal of Natural Gas Science and Engineering, 27, 452465. https://doi.org/10.1016/j.jngse.2015.08.003CrossRefGoogle Scholar
Woodruff, W. F., & Revil, A. (2011). CEC-normalized clay-water sorption isotherm: Clay-water sorption isotherm. Water Resources Research, 47(11). https://doi.org/10.1029/2011WR010919CrossRefGoogle Scholar
Zhang, L., Xiong, Y., Li, Y., Wei, M., Jiang, W., Lei, R., & Wu, Z. (2017). DFT modeling of CO2 and Ar low-pressure adsorption for accurate nanopore structure characterization in organic-rich shales. Fuel, 204, 111. https://doi.org/10.1016/j.fuel.2017.05.046CrossRefGoogle Scholar
Ziemiański, P. P., Derkowski, A., Szczurowski, J., & Kozieł, M. (2020). The structural versus textural control on the methane sorption capacity of clay minerals. International Journal of Coal Geology, 224, 103483. https://doi.org/10.1016/j.coal.2CrossRefGoogle Scholar