Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T12:27:59.578Z Has data issue: false hasContentIssue false

Behavior of Smectite in Strong Salt Brines under Conditions Relevant to the Disposal of Low- to Medium-Grade Nuclear Waste

Published online by Cambridge University Press:  01 January 2024

Heiko Hofmann
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, Postfach 3640, 76021 Karlsruhe, Germany Geologisch-Paläontologisches Institut, Universität Heidelberg, INF 234, D-69120 Heidelberg, Germany
Andreas Bauer
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, Postfach 3640, 76021 Karlsruhe, Germany
Laurence N. Warr
Affiliation:
Geologisch-Paläontologisches Institut, Universität Heidelberg, INF 234, D-69120 Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two industrial bentonites, IBECO SEAL-80 and TIXOTON TE, have been proposed as potential backfill material in the German Asse salt dome, a test field for the disposal of low- to medium-grade active nuclear waste. Considering the unlikely but possible case of a barrier breakdown with infiltration of a highly concentrated salt brine, the physicochemical stability and material behavior of these bentonites in a saturated salt brine (predominantly MgCl2) at 25°C were studied over the time period of 150 days. The results show that no mineral transformations occurred throughout the duration of the experiments and minor dissolution was only active during the first days. Some chemical properties, namely sorption capability and swelling, were reduced during contact with the salt brine, but could be reversed by removing the salt after treatment. Despite restriction of the CEC in the presence of salt solution, interlayer cation exchange reactions are still active in this environment. The long-term chemical stability of smectite in salt brine is predicted under these low-temperature conditions, but the increased permeability during aggregate formation could lead to physical breakdown of the backfill component.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Bauer, A. Schäfer, T. Dohrmann, R. Hofmann, H. and Kim, J.I., (2001) Smectite stability in acid salt solutions and the fate of Eu, Th and U in solution Clay Minerals 36 93103 10.1180/000985501547376.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., (1980) Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 495 pp.CrossRefGoogle Scholar
Cama, J. Ganor, J. Ayora, C. and Lasaga, A.C., (2000) Smectite dissolution kinetics at 80 degrees C and pH 8.8 Geochimica et Cosmochimica Acta 64 27012717 10.1016/S0016-7037(00)00378-1.CrossRefGoogle Scholar
Coppin, F. Berger, G. Bauer, A. Castet, S. and Loubet, M., (2002) Sorption of lanthanides on smectite and kaolinite Chemical Geology 182 5768 10.1016/S0009-2541(01)00283-2.CrossRefGoogle Scholar
Eberl, D.D. and Hower, J., (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay Clays and Clay Minerals 25 215227 10.1346/CCMN.1977.0250308.CrossRefGoogle Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.CrossRefGoogle Scholar
Gömmel, R., (1997) Endlagerung radioaktiver Abfälle Spektrum der Wissenschaft 97 98105.Google Scholar
Grace, M.R. Hislop, T.M. Hart, B.T. and Beckett, R., (1997) Effect of saline groundwater on the aggregation and settling of suspended particles in a turbid Australian river Colloids and Surfaces 120 123141 10.1016/S0927-7757(96)03863-0.CrossRefGoogle Scholar
Grambow, B. and Müller, R., (1990) Chemistry of glass corrosion in high saline brines Materials Research Society Symposium Proceedings 176 229240 10.1557/PROC-176-229.CrossRefGoogle Scholar
Hofmann, H., (2003) Einfluss konzentrierter Salzlösungen auf die physiko-chemischen Eigenschaften quellfähiger Tonminerale: Konsequenzen für den Einsatz von Bentonit als Versatzmaterial in einem Endlager für schwach- und mittelradioaktive Abfälle in Salzformationen Germany Dissertation, Universität Heidelberg.Google Scholar
Hofmann, H. Bauer, A. and Warr, L.N., (2002) Xcharge — ein Programm zur Berechnung der Schichtladung und Schichtladungsverteilung niedrig geladener Phyllosilikate mit Hilfe der Alkylammonium-Methode — Grundlagen und Benutzerhandbuch FZKA 6744, Germany Wissenschaftliche Berichte Forschungszentrum Karlsruhe 27 pp.Google Scholar
Huertas, F.J. Caballero, E. Jimenez, D.C.C. Huertas, F. and Linares, J., (2001) Kinetics of montmorillonite dissolution in granitic solutions Applied Geochemistry 16 397407 10.1016/S0883-2927(00)00049-4.CrossRefGoogle Scholar
Inoue, A., (1983) Potassium fixation by clay minerals during hydrothermal treatment Clays and Clay Minerals 31 8191 10.1346/CCMN.1983.0310201.CrossRefGoogle Scholar
Kasbohm, J., Venz, C., Henning, K.-H. and Herbert, H.-J. (2000) Zu Aspekten einer Langzeitsicherheit von Bentonit in hochsalinaren Lösungen. Berichte der Deutschen Ton-und Tonmineralgruppe e. V. Beiträge zur Jahrestagung, vol. 7 (Stengele, R. Hermanns and Plötze, M., editors), Germany.Google Scholar
Kienzler, B. and Loida, A., (2001) Endlagerrelevante Eigenschaften von hochradioaktiven Abfallprodukten. Charakterisierung und Bewertung. Empfehlung des Arbeitskreises HAW-Produkte Germany Forschungszentrum Karlsruhe Vol. FZKA 6651.Google Scholar
Kim, J.I. Gompper, K. and Geckeis, H., (2001) Forschung zur Langzeitsicherheit der Endlagerung hochaktiver Abfälle Radioaktivität und Kernenergie 118129.Google Scholar
Komarneni, S. and Roy, D.M., (1983) Alteration of clay minerals and zeolites in hydrothermal brines Clays and Clay Minerals 31 383391 10.1346/CCMN.1983.0310508.CrossRefGoogle Scholar
Komareni, S. and White, W.B., (1983) Hydrothermal reaction of strontium and transuranic simulator elements with clay minerals, zeolites and shales Clays and Clay Minerals 31 113 10.1346/CCMN.1983.0310205.CrossRefGoogle Scholar
Lagaly, G., Tributh, H. and Lagaly, G., (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen Identifizierung und Charakterisierung von Tonmineralen Germany Deutsche Ton- u. Tonmineralgruppe 86130.Google Scholar
Lagaly, G., Jasmund, K. and Lagaly, G., (1993) Reaktionen der Tonminerale Tonminerale und Tone: Struktur, Eigenschaften, Anwendung und Einsatz in Industrie und Umwelt Darmstadt, Germany Steinkopff Verlag 89167 10.1007/978-3-642-72488-6_3.CrossRefGoogle Scholar
Lagaly, G. and Mermut, A., (1994) Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Bloomington, Indiana The Clay Minerals Society 146.Google Scholar
Lagaly, G. and Weiss, A., (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflächen. Teil IV: Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten Kolloid-Zeitschrift und Zeitschrift für Polymere 243 4855 10.1007/BF01500614.CrossRefGoogle Scholar
Lagaly, G. Schulz, O. and Zimehl, R., (1997) Dispersionen und Emulsionen. Eine Einführung in die Kolloidik feinverteilter Stoffe einschließlich der Tonminerale Darmstadt, Germany Steinkopff Verlag 560 pp.Google Scholar
Meier, L.P. and Kahr, G., (1999) Determination of the cation exchange capacity of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylene-pentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., (2001) Baseline studies of The Clay Minerals Society Source Clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397 10.1346/CCMN.2001.0490506.CrossRefGoogle Scholar
Metz, V., (2001) Dissolution kinetics of smectite and kaolinite Israel Ben-Gurion University of the Negev 168 pp.Google Scholar
Moll, W.F., (2001) Baseline studies of The Clay Minerals Society Source Clays; geological origin Clays and Clay Minerals 49 374380 10.1346/CCMN.2001.0490503.CrossRefGoogle Scholar
Pusch, R., (1992) Use of bentonite for isolation of radioactive waste products Clay Minerals 27 353361 10.1180/claymin.1992.027.3.08.CrossRefGoogle Scholar
Pusch, R. and Alstermark, G., (1985) Experience from preparation and application of till/bentonite mixtures Engineering Geology 21 377382 10.1016/0013-7952(85)90029-8.CrossRefGoogle Scholar
Schmidt, R., (1995) Salzstock Gorleben — Als Endlager geeignet? Erkenntnisse aus der bisherigen Erkundung Information des Bundesamtes für Strahlenschutz .Google Scholar
Schlabach, S., (2000) Auflösungsexperimente von Kaolinit, Montmorillonit, Illit, Serizit und Talk in Batch- und Durchfluss-Reaktoren Germany Universität Göttingen Ph.D. thesis.Google Scholar
Sjoeberg, E.L. and Rickard, D.T., (1984) Temperature dependence of calcite dissolution kinetics between 1 and 62 degrees C at pH 2.7 to 8.4 in aqueous solutions Geochimica et Cosmochimica Acta 48 485493 10.1016/0016-7037(84)90276-X.CrossRefGoogle Scholar
Studds, P.G. Stewart, D.I. and Cousens, T.W., (1998) The effects of salt solutions on the properties of bentonite-sand mixtures Clay Minerals 33 651660 10.1180/claymin.1998.033.4.12.CrossRefGoogle Scholar
Sylwester, E.R. Hudson, E.A. and Allen, P.G., (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite Geochimica et Cosmochimica Acta 64 24312438 10.1016/S0016-7037(00)00376-8.CrossRefGoogle Scholar
Valles, J.M., Burlando, L., Chiachiarini, P., Giaveno, M.A. and Impiccini, A. (1989) Geological and genetical features of the Upper Cretaceous bentonite deposit of North Patagonia, Argentina. Contribución al P. IC. G. -24. Cretácio de América Latina, Buenos Aires, 7998.Google Scholar
Wolery, T.J. (1992) EQ3/6. A software package for geochemical modeling. University of California, Lawrence Livermore National Laboratory.Google Scholar
Zachara, J.M. Smith, S.C. Liu, C. McKinley, J.P. Serne, R.J. and Gassman, P.L., (2002) Sorption of Cs (super +) to micaceous subsurface sediments from the Hanford Site, USA Geochimica et Cosmochimica Acta 66 193211 10.1016/S0016-7037(01)00759-1.CrossRefGoogle Scholar
Zysset, M. and Schindler, P.W., (1996) The proton promoted dissolution kinetics of K-montmorillonite Geochimica et Cosmochimica Acta 60 921931 10.1016/0016-7037(95)00451-3.CrossRefGoogle Scholar