Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T18:54:29.141Z Has data issue: false hasContentIssue false

Cation-Exchange Behavior of Clays and Synthetic Aluminosilica Gels

Published online by Cambridge University Press:  01 July 2024

C. H. Chu
Affiliation:
Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802
L. J. Johnson
Affiliation:
Department of Agronomy, The Pennsylvania State University, University Park, Pennsylvania 16802
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cation-exchange capacities determined by methylene blue adsorption (CEC MB) and by the amount of K displaced from a K-saturated clay by NH4 (CEC K//NH4) correlate closely in five soil clays from Pennsylvania, but differ greatly in two soil clays with a large content of amorphous material. CEC MB was found to provide a more precise distinction between montmorillonite and vermiculite than CEC K//NH4. Synthetic aluminosilicate gels showed CEC K//NH4 > CEC Ca/Mg > CEC MB, but no relation to the behavior of the two soil clays with a large content of amorphous material was found.

Резюме

Резюме

Катионные обменные способности, определенные с помощью адсорбции метилена синего (КОС МС) и с помощью определения объема К, выделенного из насыщенной К глнны при взаимодействии с NH4 (КОС K//NH4), хорошо коррелируются для пяти почвенных глин из Пенсильвании, но сильно отличаются для двух почвенных глин с большим содержанием аморфного материала. Было обнаружено, что КОС МС обеспечивает более точное различение между монтмориллонитом и вермикулитом, чем КОС K//NH4. Синтетические алюминосиликатные гели показали, что КОС K//NH4 > КОС Ca/Mg > КОС МС, но не было найдено отношения к поведению двух почвенных глин с большим содержанием аморфного материала.

Résumé

Résumé

Les capacités d’échange de cations déterminées par l'adsorption du bleu de méthylène (CEC MB) et par la quantité de K déplacée d'une argile saturée de K par NH4 (CEC K/NH4 sont très proches dans cinq argiles de sol de Pennsylvanie, mais sont très différents dans deux argiles de sol contenant beaucoup de matière amorphe. Il a été trouvé que CEC MB procurait une distinction plus précise entre la montmorillonite et la vermicullite que CEC K/ /NH4. Des gels synthétiques d'aluminosilice montraient CEC/ /NH4 > CEC Ca/Mg > CEC MB, mais il n'a été trouvé aucune relation avec le comportement des deux argiles de sol contenant beaucoup de matière amorphe.

Resüme

Resüme

In fünf Erden aus Pennsylvania sind die Kationenaustauschkapazitäten, welche via Methylenblauadsorption (CEC MB) und durch den Anteil von Kalium, in einem K-gesättigten Ton durch NH4 ersetzt (CEC K/ /NH4), bestimmt wurden, untereinander sehr ähnlich, aber unterscheiden sich sehr in zwei Erden, die viel amorphes Material enthalten. CEC MB zeigte einen präziseren Unterschied zwischen Montmorillonit und Vermiculit als CEC K/ /NH4. Synthetische Aluminosilikatgele zeigten CEC K/ /NH4 >CEC Ca/Mg >CEC MB, aber keine Verbindung zu dem Verhalten der zwei Erden mit dem hohen Gehalt an amorphen Material.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Footnotes

1

Authorized for publication as Paper No. 5512 in the journal series of the Agricultural Experimental Station, The Pennsylvania State University.

References

Alexiades, C. A. and Jackson, M. L. (1965) Quantitative determination of vermiculite in soils: Soil Sci. Soc. Am. Proc. 29, 522527.CrossRefGoogle Scholar
Anderson, J. U. (1963) An improved pretreatment for mineralogical analysis of samples containing organic matter: Clays & Clay Minerals 10, 380388.Google Scholar
Chu, C. H., Johnson, L. J., and Hussey, G. A. (1977) Quantitative clay mineral analysis using simultanous linear equations. II. An example: Agron. Abstr., 69th Annu. Meet. Am. Soc. Agron., Los Angeles, Calif., 187 (Abstract).Google Scholar
Hang, P. T. and Brindley, G. W. (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation-exchange capacities (Clay-organic studies XVII): Clays & Clay Minerals 18, 203212.CrossRefGoogle Scholar
Hashimoto, I. and Jackson, M. L. (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration: Clays & Clay Minerals 7, 102113.Google Scholar
Medlin, J. H., Suhr, N. H., and Bodkin, J. B. (1969) Analysis of silicates employing LiBO2 fusion: At. Absorpt. Newsl. 8, 2529.Google Scholar
Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: Clays & Clay Minerals 7, 317327.Google Scholar
Rengasamy, P., Sarma, V. A. K., and Krishna Murti, G. S. R. (1975) Quantitative mineralogical analysis of soil clays containing amorphous materials: a modification of the Alexiades and Jackson procedure: Clays & Clay Minerals 23, 7880.CrossRefGoogle Scholar
van Reeuwijk, L. P. and de Villiers, J. M. (1968) Potassium fixation by amorphous aluminosilica gels: Soil Sci. Soc. Am. Proc. 32, 238240.CrossRefGoogle Scholar