Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T07:15:49.579Z Has data issue: false hasContentIssue false

CEC and 7Li MAS NMR Study of Interlayer Li+ in the Montmorillonite—Beidellite Series at Room Temperature and After Heating

Published online by Cambridge University Press:  01 January 2024

Annett Steudel*
Affiliation:
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
Ralf Heinzmann
Affiliation:
Bruker Biospin GmbH, Silberstreifen 4, 76287, Rheinstetten, Germany
Sylvio Indris
Affiliation:
Institute of Applied Materials — Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
Katja Emmerich
Affiliation:
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany Competence Center for Material Moisture (CMM), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
*
*E-mail address of corresponding author: annett.steudel@kit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The objective of the study was to contribute to the understanding of the influence of the structure and the 2:1 layer dimension of smectites on cation exchange capacity (CEC) reduction and the hydration behavior of Li-saturated smectites after heating. Five montmorillonites extracted from bentonites of different provenance were saturated with Li+ and heated to 300°C. Initial montmorillonites and montmorillonites with reduced layer charge (RCM) were characterized by comprehensive mineralogical analysis supplemented by CEC measurements, surface-area measurements by Ar adsorption, and 7Li, 27Al, and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The CEC of the initial montmorillonites varied between 89 and 130 cmol(+)/kg while the CEC of the RCM prepared at 300°C varied between 8 and 25 cmol(+)/kg. The lateral dimension of the 2:1 layers varied between 70 and 200 nm. The greatest decrease in CEC was observed for the montmorillonite with the largest diameter of the 2:1 layers and the smallest decrease was observed for the montmorillonite with the smallest diameter of the 2:1 layers. 7Li MAS NMR revealed an axially symmetric chemical environment of the hydrated interlayer Li+ with ηΔ = 0 for the chemical shift anisotropy tensor for unheated montmorillonites with >33% tetrahedral layer charge (ξ). The chemical environment is typical of innersphere hydration complexes of interlayer Li+. An axially non-symmetric chemical environment of the interlayer Li+ with ηCS of close to one was observed for all RCM. While the remaining CEC of RCM prepared at 300°C reflected the variable CEC at the edges, and thus the lateral size or aspect ratio of the 2:1 layers, the hydration complex of interlayer Li+ was strongly determined by the isomorphic substitutions in the dioctahedral 2:1 layers.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2015

References

Alba, M.D. Alvero, R. Becerro, A.I. Castro, M.A. and Trillo, J.M., 1998 Chemical behavior of lithium ions in reexpanded Li-montmorillonite The Journal of Physical Chemistry (B) 102 22072213.CrossRefGoogle Scholar
Alvero, R. Alba, M.D. Castro, M.A. and Trillo, J.M., 1994 Reversible migration of lithium in montmorillonite The Journal of Physical Chemistry 98 78487853.CrossRefGoogle Scholar
Bak, M. Ramussen, J.T. and Nielsen, N.C., 2000 SIMPSON: A general simulation program for solid-state NMR spectroscopy Journal of Magnetic Resonance 147 296330.CrossRefGoogle Scholar
Becerro, A.I. Mantovani, M. and Escudero, A., 2009 Mineralogical stability of phyllosilicates in hyperalkaline fluids: Influence of layer nature, octahedral occupation and presence of tetrahedral Al American Mineralogist 94 11871197.CrossRefGoogle Scholar
Begaudeau, K. Morizet, Y. Florian, P. Paris, M. and Mercier, J.-C., 2012 Solid-state NMR analysis of Febearing minerals: Implications and applications for earth sciences European Journal of Mineralogy 24 535550.CrossRefGoogle Scholar
Betega de Paiva, L. Morales, A.R. and Diaz, F.R.V., 2008 Organoclays: Properties, preparation and applications Applied Clay Science 42 824.CrossRefGoogle Scholar
Breen, C. Madejová, J. and Komadel, P., 1995 Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis Journal of Materials Chemistry 5 469474.CrossRefGoogle Scholar
Breen, C. Watson, R. Madejová, J. Komadel, P. and Klapyta, Z., 1997 Acid-activated organoclays: Preparation, characterization and catalytic activity of acidtreated tetra-alkyammonium exchanged smectites Langmuir 13 64736479.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1932 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Bujdák, J. Slosiariková, H. Nováková, L. and Čičel, B., 1991 Fixation of lithium cations in montmorillonite Chemical Papers 45 499507.Google Scholar
Cadars, S. Guégan, R. Garaga, M.N. Bourrat, X. Le Forestier, L. Fayon, F. Huynh, T.V. Allier, T. Nour, Z. and Massiot, D., 2012 New insights into the molecular structures, compositions, and cation distributions in synthetic and natural montmorillonite clays Chemistry of Materials 24 43764389.CrossRefGoogle Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays and Clay Minerals 19 175186.CrossRefGoogle Scholar
Carroll, D. and Starkey, H.C., 1971 Reactivity of clay minerals with acids and alkalis Clays and Clay Minerals 19 321333.CrossRefGoogle Scholar
Chang, F.-R.C. Skipper, N.T. and Sposito, G., 1997 Monte Carlo and molecular dynamics simulations of interfacial structure in lithium-montmorillonite hydrates Langmuir 13 20742082.CrossRefGoogle Scholar
Delavernhe, L. Steudel, A. Darbha, G.K. Schäfer, T. Schuhmann, R. Wöll, C. Geckeis, H. and Emmerich, K., 2015 Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 591599.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Muller, F., 1995 An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731.CrossRefGoogle Scholar
Eisenhour, D.D. and Brown, R.K., 2009 Bentonite and its impact on modern life Elements 5 8388.CrossRefGoogle Scholar
Emmerich, K. Madson, F.T. and Kahr, G., 1999 Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites Clays and Clay Minerals 47 591604.CrossRefGoogle Scholar
Emmerich, K., Christidis, G.E., 2011 Thermal analysis in the characterization and processing of industrial minerals Advances in the Characterization of Industrial Minerals Twickenham, UK European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland.Google Scholar
Emmerich, K. Plötze, M. and Kahr, G., 2001 Reversible collapse and Mg2+ release of de- and rehydroxylated homoionic cis-vacant montmorillonites Applied Clay Science 19 143154.CrossRefGoogle Scholar
Emmerich, K. Wolters, F. Kahr, G. and Lagaly, G., 2009 Clay profiling: The classification of montmorillonites Clays and Clay Minerals 57 104114.CrossRefGoogle Scholar
Fysh, S.A. Cashion, J.D. and Clark, P.E., 1983 Mössbauer effect studies of iron in kaolin: I Structural iron Clays and Clay Minerals 31 285292.CrossRefGoogle Scholar
Gates, W.P. Komadel, P. Madejová, J. Bujdák, J. Stucki, J.W. and Kirkpatrick, R.J., 2000 Electronic and structural properties of reduced-charge montmorillonites Applied Clay Science 16 257271.CrossRefGoogle Scholar
Greathouse, J. and Sposito, G., 1998 Monte Carlo and molecular dynamics studies of interlayer structure in Li(H2O)3 — smectites Journal of Physical Chemistry B 102 24062414.CrossRefGoogle Scholar
Greene-Kelly, R., 1952 A test for montmorillonite Nature 170 11301131.CrossRefGoogle Scholar
Gregg, S.J. and Sing, K.S.W., 1991 Adsorption, Surface Area and Porosity London Academic Press.Google Scholar
Harvey, C.C. Lagaly, G., Bergaya, F. and Lagaly, G., 2013 Industrial applications Handbook of Clay Science — Part B Techniques and Applications Oxford Elsevier.Google Scholar
Hofmann, U. and Klemen, R., 1950 Verlust der Austauschfähigkeit von Lithium-Ionen an Bentonit durch Erhitzung Zeitschrift für Anorganische und Allgemeine Chemie 262 9599.CrossRefGoogle Scholar
Hrobáriková, J. and Komadel, P., 2002 Sorption properties of reduced charge montmorillonites Geologica Carpathica 53 9398.Google Scholar
Hrobárikovaá, J. Madejovaá, J. and Komadel, P., 2001 Effect of heating temperature on Li-fixation, layer charge and properties of fine fractions of bentonites Journal of Materials Chemistry 11 14521457.CrossRefGoogle Scholar
Jaynes, W.F. and Bigham, J.M., 1987 Charge reduction, octahedral charge, and lithium retention in heated, Lisaturated smectites Clays and Clay Minerals 35 440448.CrossRefGoogle Scholar
Jozefaciuk, G. and Bowanko, G., 2002 Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals Clays and Clay Minerals 50 771783.CrossRefGoogle Scholar
Karakassides, M.A. Madejová, J. Arvaiová, B. Bourlinos, A. Petridis, D. and Komadel, P., 1999 Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies Journal of Materials Chemistry 9 15531558.CrossRefGoogle Scholar
Kleeberg, R. and Bergmann, J., 2002 Quantitative phase analysis using the Rietveld method and a fundamental parameter approach Powder Diffraction: Proceedings of the II International School on Powder Diffraction Kolkata, India IACS.Google Scholar
Komadel, P., 2003 Chemically modified smectites Clay Minerals 38 127138.CrossRefGoogle Scholar
Komadel, P. Janek, M. Madejová, J. Weekes, A. and Breen, C., 1997 Acidity and catalytic activity of mildly acidtreated Mg-rich montmorillonite and hectorite Journal of the Chemical Society, Faraday Transactions 93 42074210.CrossRefGoogle Scholar
Komadel, P. Madejová, J. and Bujdák, J., 2005 Preparation and properties of reduced-charge smectites — A review Clays and Clay Minerals 53 313334.CrossRefGoogle Scholar
Komarneni, S. Fyfe, C.A. Kennedy, G.J. and Strobl, H., 1986 Characterization of synthetic and naturally occurring clays by 27Al and 29Si magic-angle spinning NMR spectroscopy Journal of the American Ceramic Society 69 C4547.CrossRefGoogle Scholar
Köster, H.M., 1977 Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtausch-kapazitäten, sowie der Darstellung der Ladungsverteilung in der Struktur mittels Dreiecks-koordinaten Clay Minerals 12 4554.CrossRefGoogle Scholar
Lagaly, G., Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Boulder, Colorado, USA The Clay Minerals Society.Google Scholar
Lagaly, G. and Weiss, A., 1971 Anordnung und Orientierung kationischer Tenside auf ebenen Silicatoberflächen Teil IV Kolloid-Zeitschrift und Zeitschrift für Polymere 243 4855.CrossRefGoogle Scholar
Lippmaa, E. Mägi, M. Samoson, A. Engelhardt, G. and Grimmer, A.-R., 1980 Structural studies of silicates by solid-state high-resolution 29Si NMR Journal of the American Chemical Society 102 48894893.CrossRefGoogle Scholar
Luca, V. Cardile, C.M. and Meinhold, R.H., 1989 High-resolution multinuclear NMR study of cation migration in montmorillonite Clay Minerals 24 115119.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Gates, W.P. and Komadel, P., 1996 Preparation and infrared spectroscopic characterization of reduced charge montmorillonite with various Li contents Clay Minerals 31 233241.CrossRefGoogle Scholar
Madejová, J. Arvaiová, B. and Komadel, P., 1999 FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites Spectrochimica Acta Part A 55 24672476.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Petit, S. and Komadel, P., 2000 Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region Clay Minerals 35 739751.CrossRefGoogle Scholar
Mägi, M. Lippmaa, E. Samoson, A. Engelhardt, G. and Grimmer, A.-R., 1984 Solid-state high-resolution silicon-29 chemical shifts in silicates Journal of Physical Chemistry 88 15181522.CrossRefGoogle Scholar
Massiot, D. Fayon, F. Capron, M. King, I. Le Calvé, S. Alonso, B. Durand, J.-O. Bujoli, B. Gan, Z. and Hoatson, G., 2002 Modelling one- and two-dimensional solid state NMR spectra Magnetic Resonance in Chemistry 40 7076.CrossRefGoogle Scholar
Mehra, O. P., 1958 Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate Clays and Clay Minerals 7 1 317327.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Mignon, P. Ugliengo, P. Sodupe, M. and Hernandez, E.R., 2010 Ab initio molecular dynamics study of the hydration of Li+, Na+, and K+ in a montmorillonite model. Influence of isomorphic substitution Physical Chemistry Chemical Physics 12 688697.CrossRefGoogle Scholar
Mosser, C. Michot, L.J. Villieras, F. and Romeo, M., 1997 Migration of cations in copper(II)-exchanged montmorillonite and laponite upon heating Clays and Clay Minerals 45 789802.CrossRefGoogle Scholar
Murad, E., 1998 Clays and clay minerals: What can Mössbauer spectroscopy do to help understand them? Hyperfine Interactions 117 3970.CrossRefGoogle Scholar
Murad, E. Johnston, J.H., Long, G.J., 1987 Iron oxides and oxyhydroxides Mössbauer Spectroscopy Applied to Inorganic Chemistry New York Plenum.Google Scholar
Murad, E. and Schwertmann, U., 1986 Influence of Al substitution and crystal size on the room-temperature Mössbauer spectrum of hematite Clays and Clay Minerals 34 16.CrossRefGoogle Scholar
Novák, I. and Číčel, B., 1978 Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition Clays and Clay Minerals 26 341344.CrossRefGoogle Scholar
Oldfield, E. Kinsey, R.A. Smith, K.A. Nichols, J.A. and Kirkpatrick, R.J., 1983 High-resolution NMR of inorganic solids — influence of magnetic centers on magic-angle sample-spinning lineshapes in some natural aluminosilicates Journal of Magnetic Resonance 51 325329.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950.CrossRefGoogle Scholar
Petrick, K. (2011) How does mineralogy control the technical properties of paper kaolins and ceramic clays? PhD thesis, Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften, Universität Karlsruhe, Germany.Google Scholar
Sanz, J. and Robert, J.-L., 1992 Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicates 2:1 Physics and Chemistry of Minerals 19 3945.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J.M., 1984 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793.CrossRefGoogle Scholar
Schultz, L.G., 1969 Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays and Clay Minerals 17 115149.CrossRefGoogle Scholar
Skipper, N.T. Sposito, G. and Chang, F.-R.C., 1995 Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 2. Monolayer hydrates Clays and Clay Minerals 43 294303.CrossRefGoogle Scholar
Skoubris, E.N. Chryssikos, G.D. Christidis, G.E. and Gionis, V., 2013 Structural characterization of reduced-charge montmorillonites — evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics Clays and Clay Minerals 61 8397.CrossRefGoogle Scholar
Sposito, G. Prost, R. and Gaultier, J.P., 1983 Infrared spectroscopic study of adsorbed water on reduced-charge montmorillonites Clays and Clay Minerals 31 916.CrossRefGoogle Scholar
Steudel, A. (2009) Selection strategy and modification of layer silicates for technical applications. PhD thesis, Karlsruher Mineralogische und Geochemische Hefte (36), Schriftenreihe des Instituts fü r Mineralogie und Geochemie, Universitä t Karlsruhe (TH), Germany.Google Scholar
Steudel, A. Batenburg, L.F. Fischer, H.R. Weidler, P.G. and Emmerich, K., 2009 Alteration of swelling clay minerals by acid activation Applied Clay Science 44 105115.CrossRefGoogle Scholar
Steudel, A. and Emmerich, K., 2013 Strategies for the successful preparation of homoionic smectites Applied Clay Science 75-76 1321.CrossRefGoogle Scholar
Theng, B.K.G. Hayashi, S. Soma, M. and Seyama, H., 1997 Nuclear magnetic resonance and X-ray photoelectron spectroscopic investigation of lithium migration in montmorillonite Clay and Clay Minerals 45 718723.CrossRefGoogle Scholar
Tkáč, I. Komadel, P. and Müller, D., 1994 Acid-treated montmorillonites — A study by 29Si and 27Al MAS NMR Clay Minerals 29 1119.CrossRefGoogle Scholar
Tournassat, C. Neaman, A. Villiéras, F. Bosbach, D. and Charlet, L., 2003 Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations American Mineralogist 88 19891995.CrossRefGoogle Scholar
Tributh, H. and Lagaly, G., 1986 Aufbereitung und Identifizierung von Boden und Lagerstättentonen Teil I — Aufbereitung der Proben im Labor GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Tributh, H. and Lagaly, G., 1986 Aufbereitung und Identifizierung von Boden und Lagerstättentonen Teil II — Korngroßenanalyse und Gewinnung von Tonsubfraktionen GIT Fachzeitschrift für das Laboratorium 30 771776.Google Scholar
Trillo, J.M. Alba, M.D. Alvero, R. and Castro, M.A., 1993 Reexpansion of collapsed Li-montmorillonite; Evidence on the location of Li+ ions Journal of the Chemical Society, Chemical Communications 24 18091811.CrossRefGoogle Scholar
Wagner, F.E. and Kyek, A., 2004 Mössbauer spectroscopy in archeology: Introduction and experimental considerations Hyperfine Interactions 154 533.CrossRefGoogle Scholar
Wang, J. Zeng, F.G. and Wang, J.X., 2006 Molecular dynamics simulation studies of interlayered structure in lithium-, sodium- and potassium-montmorillonite hydrate Acta Chimica Sinica 64 16541658.Google Scholar
Weiss, C.A., 1987 High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations American Mineralogist 72 935942.Google Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Wolters, F. (2005) Classification of montmorillonites. PhD. thesis, Fakultät für Bauingenieur-, Geo - und Umweltwissenschaften, Universität Karlsruhe, Germany.Google Scholar
Wolters, F. and Emmerich, K., 2007 Thermal reactions of smectites — relation of dehydroxylation temperature to octahedral structure Thermochimica Acta 462 8088.CrossRefGoogle Scholar
Wolters, F. Lagaly, G. Kahr, G. Nüesch, R. and Emmerich, K., 2009 A comprehensive characterization of dioctahedral smectites Clays and Clay Minerals 57 115133.CrossRefGoogle Scholar
Xi, Y. Ding, Z. He, H. and Frost, R.L., 2004 Structure of organoclays — an X-ray diffraction and thermogravimetric analysis study Journal of Colloid and Interface Science 277 116120.CrossRefGoogle ScholarPubMed