Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T13:31:42.517Z Has data issue: false hasContentIssue false

Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain)

Published online by Cambridge University Press:  01 January 2024

E. García-Romero*
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de C. C. Geológicas, Universidad Complutense, Madrid, Spain
M. Suárez Barrios
Affiliation:
Departamento de Geología, Universidad de Salamanca, Plaza de la Merced s/n 37008, Salamanca, Spain
M. A. Bustillo Revuelta
Affiliation:
Departamento de Geología, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, Madrid, Spain
*
*E-mail address of corresponding author: mromero@geo.ucm.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Palygorskite in Miocene mudstones, palustrine limestones and calcretes from the Esquivias locality (Madrid Basin, Spain) has been analyzed by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and analytical electron microscopy to determine its characteristics and chemical composition. Other palygorskites from the literature are used as references. The mean structural formula obtained from the analysis of isolated particles is (Si7.87Al0.13)O20((Al1.04Fe0.203+Mg3.11□0.65))(OH)2(OH2)4(Ca0.02K0.05Na0.08). This palygorskite has the largest Mg content reported in the literature, and it seems that, chemically, it fills the ‘compositional gap’ existing between sepiolite and palygorskite. Infrared spectroscopy reveals the absence of trioctahedral Mg and therefore the possibility of the existence of magnesic clusters in the ribbons is discounted. An homogeneous distribution of the octahedral cations (Al, Fe3+ and Mg) along the ribbons is proposed.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2004

References

Augsburger, M.S. Strasser, E. Perino, E. Mercader, R.C. and Pedregosa, J.C., (1998) FTIR and Mössbauer investigation of a substituted palygorskite: silicate with a channel structure Journal of Physical Chemical Solids 59 175180.CrossRefGoogle Scholar
Bellanca, A. Calvo, J.P. Censi, P. Neri, R. and Pozo, M., (1992) Recognition of lake-level changes in Miocene lacustrine units, Madrid basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy Sedimentary Geology 76 135153.CrossRefGoogle Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structure of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Bradley, W.F., (1940) The structural scheme of attapulgite American Mineralogist 25 405411.Google Scholar
Bustillo, M.A. and García Romero, E., (2003) Arcillas fibrosas anómalas en encostramientos y sedimentos superifciales: características y génesis (Esquivias, Cuenca de Madrid) Boletín Sociedad Española de Cerámica y Vidrio 42 289297.CrossRefGoogle Scholar
Chahi, A. Petit, S. and Decarreau, A., (2002) Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite Clays and Clay Minerals 50 306313.CrossRefGoogle Scholar
Drits, V.A. and Alexandrova, V.A., (1966) On the crystallographic nature of palygorskites Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 95 551560.Google Scholar
Drits, V.A. and Sokolova, G.V., (1971) Structure of palygorskite Soviet Physics Crystallography 16 288–231.Google Scholar
Farmer, V.C., (1974) The Infrared Spectra of Minerals London Mineralogical Society.CrossRefGoogle Scholar
Frost, R.L. Locos, O.B. Ruan, J. and Kloprogge, J.T., (2001) Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites Vibrational Spectroscopy 27 13.CrossRefGoogle Scholar
Galan, E. and Carretero, I., (1999) A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409.CrossRefGoogle Scholar
Galan, E. Castillo, A., Singer, A. and Galan, E., (1984) Sepiolite-palygorskite in Spanish tertiary basins: Genetic patterns in continental environments Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 87124.Google Scholar
Galan, E. and Ferrero, A., (1982) Palygorskite-sepiolite clays of Lebrija, Southern Spain Clays and Clay Minerals 30 191199.CrossRefGoogle Scholar
García Romero, E., (1988) Estudio mineralógico y estratigráfico de las arcillas de las facies centrales del Neógeno del borde sur de la Cuenca del Tajo Madrid, Spain Universidad Complutense PhD thesis.Google Scholar
Gonzalez, M. and Galán, E., (1984) Mineralogía de los materiales terciarios del área de Tarazona Borja-Ablitas (Depresión del Ebro) Estudios Geológicos 40 115128.CrossRefGoogle Scholar
Güven, N., (1992) The coordination of aluminum ions in the palygorskite structure Clays and Clay Minerals 40 457461.CrossRefGoogle Scholar
Hasnuddin Siddiqui, M.K., Singer, A. and Galan, E., (1984) Occurrence of palygorskite in the Deccan Trap Formation in India Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elesevier 243250.Google Scholar
Hayasi, H. Otsuka, R. and Imai, N., (1969) Infrared study of sepiolite and palygorskite on heating American Mineralogist 53 16131624.Google Scholar
Imai, N. Otsuka, R., Singer, A. and Galán, E., (1984) Sepiolite and palygorskite in Japan Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 211232.Google Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1991) Sepiolite and palygorskite Hydrous Phyllosilicates (exclusive of micas) Washington, D.C Mineralogical Society of America 631674.Google Scholar
Khorami, J. and Lemieux, A., (1989) Comparison of attapulgites from different sources using TG/DTG and FTIR Thermochimica Acta 138 97105.CrossRefGoogle Scholar
Leguey, S. Pozo, M. and Medina, J.A., (1985) Polygenesis of sepiolite and palygorskite in a fluvio-lacustrine environment in the Neogene Basin of Madrid Mineralogica Petrographica Acta 29A 807–301.Google Scholar
López Galindo, A. Ben Aboud, P. Fenoll Hach-Ali, P. and Casas Ruiz, J., (1996) Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain. Evidence of a detrital precursor Clay Minerals 31 3344.CrossRefGoogle Scholar
Martín Vivaldi, J.L. and Linares Gonzalez, J., (1962) A random intergrowth of sepiolite and attapulgite Clays and Clay Minerals 9 592602.CrossRefGoogle Scholar
McKeown, D.A. Post, J.E. and Etz, E.S., (2002) Vibrational analysis of palygorskite and sepiolite Clays and Clay Minerals 50 667680.CrossRefGoogle Scholar
Mendelovici, E., (1973) Infrared study of attapulgite and HCl treated attapulgite Clays and Clay Minerals 21 115119.CrossRefGoogle Scholar
Mifsud, A. Rautureau, M. and Fornes, V., (1978) Etude de l’eau dans la palygorskite a l’aide des analyses thermiques Clay Minerals 13 367374.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) Palygorskite and sepiolite Chemistry of Clays and Clay Minerals London Mineralogical Society 107112.Google Scholar
Paquet, H., Duplay, J., Valleron-Blanc, M.M. and Millot, J. (1987) Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages. Proceedings of the International Clay Conference, Denver, pp. 7377.Google Scholar
Pozo, M. Medina, J.A. and Leguey, S., (1985) Mineralogénesis de paligorskita en la zona central de la Cuenca de Madrid Boletín Sociedad Española de Mineralogía 27 1283.Google Scholar
Prost, R., (1973) Spectre infrarouge de l’eau presente dans l’attapulgite et la sepiolite Bulletin Française Argiles XXV 5363.CrossRefGoogle Scholar
Serna, C. Van Scoyoc, G.E. and Ahlrichs, J.L., (1977) Hydroxyl groups and water in palygorskite American Mineralogist 62 784792.Google Scholar
Singer, A. and Norrish, K., (1974) Pedogenic palygorskite occurrences in Australia American Mineralogist 59 508517.Google Scholar
Suáirez, M. Robert, M. Elsass, F. and Martín-Pozas, J.M., (1994) Evidence of a precursor in the neoformation of palygorskite — New data by analytical electron microscopy Clay Minerals 29 255264.CrossRefGoogle Scholar
Suarez, M. Flores, L.V. and Martín Pozas, J.M., (1995) Mineralogical data for palygorskite from Bercimuel (Segovia. Spain) Clay Minerals 30 261266.CrossRefGoogle Scholar
Torres-Ruiz, J. López Galindo, A. González-López, J.M. and Delgado, A., (1994) Geochemistry of Spanish sepiolitepalygorskite deposits: Genetic considerations based on trace elements and isotopes Chemical Geology 112 221245.CrossRefGoogle Scholar
Velde, B., (1985) Clay Minerals. APhysico-Chemical Explanation of their Occurrence Amsterdam Elsevier.Google Scholar
Verrecchia, E.P. and Le Coustumer, M.N., (1996) Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel Clay Minerals 31 183202.CrossRefGoogle Scholar
Vicente González, M.A. Suárez, M. Bañares, M.A. and de López González, J D, (1996) Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates Spectrochemica Acta (A) 52 16851694.CrossRefGoogle Scholar
Weaver, C.E. and Beck, K.C. (1977) Miocene of the S.E. United States; A Model for chemical sedimentation in a peri-marine environment. Sedimentary Geology, 17, 234 pp.CrossRefGoogle Scholar