Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T19:58:09.841Z Has data issue: false hasContentIssue false

Characterization and Origin of Fe3+-Montmorillonite in Deep-Water Calcareous Sediments (Pacific Ocean, Costa Rica Margin)

Published online by Cambridge University Press:  01 January 2024

A. Gaudin
Affiliation:
CNRS-UMR 6112, Laboratoire de Planétologie et Géodynamique, Faculté des Sciences et Techniques, Université de Nantes, BP 92208, 44322 Nantes Cedex 03, France
M. D. Buatier*
Affiliation:
Département de Géosciences, EA2642, UFR Sciences et Technique, Université de Franche Comté, 16 Route de Gray, 25065 Besançon, France
D. Beaufort
Affiliation:
CNRS-UMR 6532, Laboratoire HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
S. Petit
Affiliation:
CNRS-UMR 6532, Laboratoire HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
O. Grauby
Affiliation:
CRMC2, CNRS-UPR 7251, Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
A. Decarreau
Affiliation:
CNRS-UMR 6532, Laboratoire HydrASA, Faculté des Sciences, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: martine.buatier@univ-fcomte.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Millimetric to centimetric green grains widespread in pelagic calcareous sediments recovered at a water depth of3000 m near the Costa Rica margin were studied by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy. Samples were collected, during the Ticoflux II expedition, from the upper bioturbated part of four sedimentary cores (0.13–3.75 m below seafloor). The sediments are calcareous and siliceous nanofossil oozes (coccoliths, diatoms, radiolarians, etc.).

Green grains show generally a concentric zoning with a green rim in which smectite largely predominates over pyrite and a black core in which pyrite is prevalent. Observations by SEM indicate that this zoning results from a progressive inward alteration and replacement of the accumulations of pyrites by smectites. The high-resolution TEM observations of the smectite-pyrite interfaces suggest that the replacement of pyrites by smectite occurs through a dissolution-precipitation process with the formation of a gel. The pyrite matrix is composed of a huge number of very small (0.5–22 µm) pyrite octahedra, a typical texture resulting from the pyritization of organic material in early diagenetic environments.

The accurate mineralogical and crystal chemical characterization of the smectites indicate that they are Fe3+-montmorillonites (Fe3+-rich smectite with a dominant octahedral charge, rarely recorded in the literature). The formation of such Fe3+-montmorillonites forming green grains could be explained by two successive diagenetic redox stages: (1) reducing stage: early pyritization of the organic matter by microbial reduction within reducing micro-environments; (2) oxidizing stage: Fe3+-montmorillonite crystallized in space liberated after dissolution of pyrite connected with the rebalancing of the redox conditions of the micro-environments with the oxidizing surrounding sediments.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Berner, R.A., (1984) Sedimentary pyrite formation: an update Geochimica et Cosmochimica Acta 48 605615 10.1016/0016-7037(84)90089-9.CrossRefGoogle Scholar
Bishop, J. Madejova, J. Komadel, P. and Froschl, H., (2002) The influence of structural Fe, Al and Mg on the infrared OF! hands in spectra of dioctahedral smectites Clay Minerals 37 607616 10.1180/0009855023740063.CrossRefGoogle Scholar
Bishop, J. Murad, E. and Dyar, M.D., (2002) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy Clay Minerals 37 617628 10.1180/0009855023740064.CrossRefGoogle Scholar
Buatier, M.D. Ouyang, K. and Sanchez, J.P., (1993) Iron in hydrothermal clays from the Galapagos spreading centre mounds: consequences for the clay transition mechanism Clay Minerals 28 641655 10.1180/claymin.1993.028.4.11.CrossRefGoogle Scholar
Calvet, R. and Prost, R., (1971) Cation migration into empty octahedral sites and surface properties of clays Clays and Clay Minerals 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Elsass, F. Beaumont, A. Pemes, M. Jaunet, A.M. and Tessier, D., (1988) Changes in layer organization of Na and Ca exchanged smectite during solvent exchange for embedment in resin The Canadian Mineralogist 36 13251333.Google Scholar
Fairbridge, R.W., Larsen, G. and Chilingar, G.V., (1967) Phases of diagenesis and authigenesis Developments in Sedimentology Amsterdam Elsevier 1989.Google Scholar
Farmer, V.C. and Farmer, V.C., (1974) The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.CrossRefGoogle Scholar
Fisher, A.T. Stein, C.A. Harris, R.N. Wang, K. Silver, E.A. Pfender, M. Hutnak, M. Cherkaoui, A. Bodzin, R. and Villinger, H., (2003) Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate Geophysical Research Letters 30 14.CrossRefGoogle Scholar
Gaudin, A. Grauby, O. Noack, Y. Decarreau, A. and Petit, S., (2004) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murin Murin (Western Australia). I. XRD and multi-scale chemical approaches Clay Minerals 39 301315 10.1180/0009855043930136.CrossRefGoogle Scholar
Gaudin, A. Petit, S. Rose, J. Martin, F. Decarreau, A. Noack, Y. and Borschneck, D., (2004) Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murin Murin (Western Australia). II Spectroscopic (IR and EXAFS) approaches Clay Minerals 39 453467 10.1180/0009855043940147.CrossRefGoogle Scholar
Giresse, P. and Wiewiora, A., (2001) Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory Coast-Ghana Ridge Marine Geology 179 5170 10.1016/S0025-3227(01)00193-1.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.D. and Woodhams, F.W.D., (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., (1950) Vrelust der Austauschfahgkeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift fur Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Kelly, J.C. and Webb, J.A., (1999) The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: petrographic and geochemical evidence Sedimentary Geology 125 99114 10.1016/S0037-0738(98)00149-3.CrossRefGoogle Scholar
Köster, H.M., (1982) The crystal structure of 2:1 layer silicates Proceedings of the International Clay Conference, Bologna-Pavia 4171.Google Scholar
Köster, H.M. Ehrlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., (1999) Mineralogical and chemical characteristics of five nontronite and Fe-rich smectites Clay Minerals 34 579599 10.1180/000985599546460.CrossRefGoogle Scholar
Lanson, B., (1993) DECOMPXR, X-ray Decomposition Program France ERM, Poitiers.Google Scholar
Larsen, G. Chilingar, G.V., Larsen, G. and Chilingar, G.V., (1967) Introduction Diagenesis in Sediments The Netherlands Elsevier, Amsterdam 117.Google Scholar
Love, L.G., (1967) Early diagenetic iron sulphide in Recent sediments of the Wash, England Sedimentology 9 327352 10.1111/j.1365-3091.1967.tb01339.x.CrossRefGoogle Scholar
McKay, J.L. and Longstaff, F.J., (2003) Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank formation, Western Interior Basin Sedimentary Geology 157 175195 10.1016/S0037-0738(02)00233-6.CrossRefGoogle Scholar
Meunier, A., (2003) Argiles France Société géologique de France, GB Science Publisher.Google Scholar
Odin, G.S. Fullagar, P.D. and Odin, G.S., (1988) Geological significance of the glaucony facies Green Marine Clays Amsterdam Elsevier 295332.CrossRefGoogle Scholar
Odin, G.S. and Matter, A., (1981) De glauconiarium originae Sedimentology 28 614641 10.1111/j.1365-3091.1981.tb01925.x.CrossRefGoogle Scholar
Odin, G.S. Morton, A.C., Chilingarian, G.V. and Wolf, K.H., (1988) Authigenic green particles from marine environments Developments in Sedimentology Amsterdam Elsevier 213264.Google Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., (1998) Layer charge estimation of smectites using infrared spectroscopy Clay Minerals 33 579591 10.1180/claymin.1998.033.4.05.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Koster, H.M., (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ôlberg, Germany Clay Minerals 37 283297 10.1180/0009855023720034.CrossRefGoogle Scholar
Reynolds, R.C. (1985) NEWMOD: A computer program for the calculation of the basal diffraction intensities of mixedlayered clay minerals. Reynolds, R.C., 8 Brook Rd, Hanover, New Hampshire, USA.Google Scholar
Shen, Y. and Buick, R., (2004) The antiquity of microbial sulfate reduction Earth-Science Reviews 64 243272 10.1016/S0012-8252(03)00054-0.CrossRefGoogle Scholar
Suquet, H. Malard, C. Copin, E. and Pezerat, H., (1981) Variation du paramètre b et de la distance basale d001 dans une série de saponites à charge croissante: I. Etats hydratés Clay Minerais 16 5367 10.1180/claymin.1981.016.1.04.CrossRefGoogle Scholar
Suquet, H. Malard, C. Copin, E. and Pezerat, H., (1981) Variation du paramètre b et de la distance basale d001 dans une série de saponites à charge croissante: II. Etats ‘zéro couche’ Clay Minerais 16 181193 10.1180/claymin.1981.016.2.06.CrossRefGoogle Scholar
Tamburini, F. Adatte, T. and Föllmi, K.B., (2003) Origin and nature of green clay layers, ODP leg 184, South China Sea Proceedings of the Ocean Drilling Program, Scientific Results 184 123.Google Scholar
Tessier, D., (1984) Hydratation, gonflement et structuration des matériaux argileux au cours de la dessication et de la réhumectation France Université de Paris & INRA Versailles.Google Scholar
Wiewióra, A. Giresse, P. Petit, S. and Wilamowski, A., (2001) A deep-water glauconitization process on the Ivory Coast-Ghana marginal ridge (ODP site 959): determination of Fe3+-rich montmorillonite in green grains Clays and Clay Minerals 49 540558 10.1346/CCMN.2001.0490606.CrossRefGoogle Scholar
Wilkin, R.T. and Bames, H.L., (1997) Formation processes of framboidal pyrite Geochimica et Cosmochimica Acta 61 323339 10.1016/S0016-7037(96)00320-1.CrossRefGoogle Scholar