Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:21:31.105Z Has data issue: false hasContentIssue false

Characterization of alteration products in tephra from Haleakala, Maui: A visible-infrared spectroscopy, Mössbauer spectroscopy, XRD, EMPA and TEM study

Published online by Cambridge University Press:  01 January 2024

Janice L. Bishop*
Affiliation:
SETI Institute, 515 N. Whisman Road, Mountain View, CA 94043, USA NASA-Ames Research Center, Mail Stop 239-4, Moffett Field, CA 94035, USA
Peter Schiffman
Affiliation:
Department of Geology, University of California, Davis, CA 95616, USA
Enver Murad
Affiliation:
Bayerisches Landesamt für Umwelt, Leopoldstr. 30, Postfach 389, D-95603 Marktredwitz, Germany
M. Darby Dyar
Affiliation:
Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
Ahmed Drief
Affiliation:
Department of Geology, University of California, Davis, CA 95616, USA The Clorox Company, 7200 Johnson Drive, Pleasanton, CA 94588, USA
Melissa D. Lane
Affiliation:
Planetary Science Institute, 1700 E. Fort Lowell, Suite 106, Tucson, AZ 85719, USA
*
*E-mail address of corresponding author: jbishop@arc.nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Altered basaltic tephra from Haleakala, Maui, are characterized using multiple techniques in order to identify the minerals formed under a variety of conditions and to understand the soil formation processes here. We collected samples that are representative of typical bulk weathered material in the crater, as well as solfataric alteration in a hydrothermal environment. For this study X-ray diffraction, electron probe microanalysis, scanning electron microscopy and transmission electron microscopy are coupled with spectroscopic techniques including Mössbauer, visible-infrared reflectance, transmission infrared, and thermal infrared emission spectroscopies to analyze these samples. The unaltered tephra are composed of feldspar, glass, pyroxene and olivine. Observed alteration products include Fe oxides, phyllosilicates and sulfates, as well as SAED amorphous Al-Si-bearing material. These samples are potential analogs for altered volcanic material on Mars as the pedogenic influences and contact with plants and animals are minimal. Results from this study may help to determine spectral signatures of these samples that could be used for identification on Mars of the minerals observed here.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Agresti, D.G., Dyar, M.D. and Schaefer, M.W. (2006) Derivation of velocity scales for Mars Mössbauer data. Lunar Planetary Science XXXVII, CD-ROM #1517 (abstract).Google Scholar
Bandfield, J.L. Glotch, T.D. and Christensen, P.R., (2003) Spectroscopic identification of carbonate minerals in the martian dust Science 301 10841087 10.1126/science.1088054.CrossRefGoogle ScholarPubMed
Barrón, V. and Torrent, J., (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour Journal of Soil Science 37 499510 10.1111/j.1365-2389.1986.tb00382.x.CrossRefGoogle Scholar
Bell, J.F. III Squyres, S.W. Arvidson, R. Arneson, H.M. Bass, D. Blaney, D.L. Cabrol, N.A. Calvin, W.M. Farmer, J. Farrand, W.H. Goetz, W. Golombek, M.P. Grant, J.A. Greeley, R. Guinness, E. Hayes, A.G. Hubbard, M.Y.H. Herkenhoff, K.E. Johnson, M.J. Johnson, J.R. Joseph, J. Kinch, K.M. Lemmon, M. Madsen, M.B. Maki, J.N. Malin, M. McCartney, E. McLennan, S.M. McSween, H.Y. Jr. Ming, D.W. Moersch, J.E. Morris, R.V. Noe Dobrea, E.Z. Parker, T.J. Proton, J. Rice, J.W. Jr. Seelos, F. Soderblom, J. Soderblom, L.A. Sohl-Dickstein, J.N. Sullivan, R.J. Wolff, M.J. and Wang, A., (2004) Pancam multispectral imaging results from the Spirit rover at Gusev Crater Science 305 800806 10.1126/science.1100175.CrossRefGoogle ScholarPubMed
Bibring, J.-P. Langevin, Y. Gendrin, A. Gondet, B. Poulet, F. Berthé, M. Soufflot, A. Arvidson, R. Mangold, N. Mustard, J. and Drossart, P., (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations Science 307 15761581 10.1126/science.1108806.CrossRefGoogle ScholarPubMed
Bishop, J.L. Murad, E., Smellie, J.L. and Chapman, M.G., (2002) Spectroscopic and geochemical analyses of ferrihydrite from hydrothermal springs in Iceland and applications to Mars Volcano-Ice Interactions on Earth and Mars London Geological Society 357370.Google Scholar
Bishop, J.L. and Murad, E., (2005) The visible and infrared spectral properties of jarosite and alunite American Mineralogist 90 11001107 10.2138/am.2005.1700.CrossRefGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.O., (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 701715 10.1346/CCMN.1994.0420606.CrossRefGoogle Scholar
Bishop, J.L. Fröschl, H. and Mancinelli, R.L., (1998) Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing Journal of Geophysical Research 103 31,45731,476 10.1029/1998JE900008.CrossRefGoogle ScholarPubMed
Bishop, J.L. Schiffman, P. Southard, R.J., Smellie, J.L. and Chapman, M.G., (2002) Geochemical and mineralogical analyses of palagonitic tuffs and altered rinds of pillow lavas on Iceland and applications to Mars Volcano-Ice Interactions on Earth and Mars London Geological Society 371392.Google Scholar
Bishop, J.L. Murad, E. Lane, M.D. and Mancinelli, R.L., (2004) Multiple techniques for mineral identification on Mars: A study of hydrothermal rocks as potential analogues for astrobiology sites on Mars Icarus 169 331–323 10.1016/j.icarus.2003.12.025.Google Scholar
Bishop, J.L. Dyar, M.D. Lane, M.D. and Banfield, J.F., (2005) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth International Journal of Astrobiology 3 275285 10.1017/S1473550405002259.CrossRefGoogle Scholar
Carr, M.H., (1981) The Surface of Mars New Haven, Connecticut, USA Yale University Press 232 pp.Google Scholar
Chen, C.H. and Frey, F.A., (1985) Trace element and isotopic geochemistry of lavas from Haleakala volcano, East Maui, Hawaii: Implications for the origin of Hawaiian basalts Journal of Geophysical Research 90 87438768 10.1029/JB090iB10p08743.CrossRefGoogle Scholar
Chen, C.H. Frey, F.A. Garcia, M.O. Dalrymple, G.B. and Hart, S.R., (1991) The tholeiite to alkalic basalt transition at Haleakala volcano, Maui, Hawaii Contributions to Mineralogy and Petrology 106 183200 10.1007/BF00306433.CrossRefGoogle Scholar
Christensen, P.R. Ruff, S.W. Fergason, R.L. Knudson, A.T. Anwar, S. Arvidson, R.E. Bandfield, J.L. Blaney, D.L. Budney, C. Calvin, W.M. Glotch, T.D. Golombek, M.P. Gorelick, N. Graff, T.G. Hamilton, V.E. Hayes, A. Johnson, J.R. McSween, H.Y. Jr. Mehall, G.L. Mehall, L.K. Moersch, J.E. Morris, R.V. Rogers, A.D. Smith, M.D. Squyres, S.W. Wolff, M.J. and Wyatt, M.B., (2004) Initial results from the Mini-TES experiment in Gusev Crater from the Spirit rover Science 305 837842 10.1126/science.1100564.CrossRefGoogle ScholarPubMed
Farmer, V.C., (1974) The Infrared Spectra of Minerals London The Mineralogical Society 10.1180/mono-4 539 pp.CrossRefGoogle Scholar
Gendrin, A. Mangold, N. Bibring, J.-P. Langevin, Y. Gondet, B. Poulet, F. Bonello, G. Quantin, C. Mustard, J. Arvidson, R. and LeMouélic, S., (2005) Sulfates in martian layered terrains: The OMEGA/Mars Express view Science 307 15871591 10.1126/science.1109087.CrossRefGoogle ScholarPubMed
Klingelhöfer, G. Morris, R.V. Bernhardt, B. Schröder, C. Rodionov, D. de Souza, P.A.J. Yen, A.S. Gellert, R. Evlanov, E.N. Zubkov, B. Foh, J. Bonnes, U. Kankeleit, E. Gütlich, P. Ming, D.W. Renz, F. Wdowiak, T.J. Squyres, S.W. and Arvidson, R.E., (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer Science 306 17401745 10.1126/science.1104653.CrossRefGoogle ScholarPubMed
Lane, M.D., (2007) Midinfrared emission spectroscopy of sulfate and sulfate-bearing minerals American Mineralogist 92 118 10.2138/am.2007.2170.CrossRefGoogle Scholar
Lane, M.D. Dyar, M.D. and Bishop, J.L., (2004) Spectroscopic evidence for hydrous iron sulfate in the Martian soil Geophysical Research Letters 31 L19702 10.1029/2004GL021231.CrossRefGoogle Scholar
MacDonald, G.A. (1978) Geologic map of the crater section of Haleakala National Park, Maui, Hawaii. Miscellaneous Investigations Series, Report: I-1088. U.S. Geological Survey, 8.Google Scholar
Milliken, R.E. and Mustard, J.F., (2005) Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy Journal of Geophysical Research 110 E12001 10.1029/2005JE002534.CrossRefGoogle Scholar
Morris, R.V. Agresti, D.G. Lauer, H.V. Jr. Newcomb, J.A. Shelfer, T.D. and Murali, A.V., (1989) Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite Journal of Geophysical Research 94 27602778 10.1029/JB094iB03p02760.CrossRefGoogle Scholar
Morris, R.V. Golden, D.C. Ming, D.W. Shelfer, T.D. Jørgensen, L.C. Bell, J.F. III Graff, T.G. and Mertzman, S.A., (2001) Phyllosilicate-poor palagonitic dust from Mauna Kea volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? Journal of Geophysical Research 106 50575083 10.1029/2000JE001328.CrossRefGoogle Scholar
Morris, R. V. Klingelhöfer, G. Schröder, C. Rodionov, D. S. Yen, A. Ming, D. W. de Souza, P. A. Fleischer, I. Wdowiak, T. Gellert, R. Bernhardt, B. Evlanov, E. N. Zubkov, B. Foh, J. Bonnes, U. Kankeleit, E. Gütlich, P. Renz, F. Squyres, S. W. and Arvidson, R. E., (2006) Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills Journal of Geophysical Research: Planets 111 E2 n/a-n/a 10.1029/2005JE002584.CrossRefGoogle Scholar
Murad, E. Johnston, J.H. and Long, G.J., (1987) Iron oxides and oxyhydroxides Mössbauer Spectroscopy Applied to Inorganic Chemistry New York Plenum Publishing Corporation 507582.Google Scholar
Parfitt, R.L. Childs, C.W. and Eden, D.N., (1988) Ferrihydrite and allophane in four andepts from Hawaii and implications for their classification Geoderma 41 223241 10.1016/0016-7061(88)90062-6.CrossRefGoogle Scholar
Poulet, F. Bibring, J.-P. Mustard, J.F. Gendrin, A. Mangold, N. Langevin, Y. Arvidson, R.E. Gondet, B. and Gomez, C., (2005) Phyllosilicates on Mars and implications for the early Mars history Nature 438 632–627 10.1038/nature04274.CrossRefGoogle Scholar
Salisbury, J.W. and Wald, A., (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals Icarus 96 121128 10.1016/0019-1035(92)90009-V.CrossRefGoogle Scholar
Salisbury, J.W. Walter, L.S. Vergo, N. and D’Aria, D.M., (1991) Infrared (2.1–25 µm) Spectra of Minerals Baltimore Johns Hopkins University Press 267 pp.Google Scholar
Schiffman, P. and Roeske, S., (2002) Electron microprobe analysis of minerals Encyclopedia of Physical Sciences and Technology 5 293306.Google Scholar
Schiffman, Peter Spero, Howard J. Southard, R. J. and Swanson, D. A., (2000) Controls on palagonitization versus pedogenic weathering of basaltic tephra: Evidence from the consolidation and geochemistry of the Keanakako'i Ash Member, Kilauea Volcano Geochemistry, Geophysics, Geosystems 1 8 n/a-n/a 10.1029/2000GC000068.CrossRefGoogle Scholar
Schiffman, P. Southard, R.J. Eberl, D.D. Bishop, J.L., Smellie, J.L. and Chapman, M.G., (2002) Distinguishing palagonitized from pedogenically-altered basaltic Hawaiian tephra: mineralogical and geochemical criteria Volcano-Ice Interactions on Earth and Mars London Geological Society 393405.Google Scholar
Schiffman, P. Zierenberg, R.A. Marks, N. Bishop, J.L. and Dyar, M.D., (2006) Acid fog deposition at Kilauea Volcano: A possible mechanism for the formation of siliceous-sulfate rock coatings on Mars Geology 34 921924 10.1130/G22620A.1.CrossRefGoogle Scholar
Sherrod, D.R. Nishimitsu, Y. and Tagami, T., (2003) New K-Ar ages and the geologic evidence against rejuvenated-stage volcanism at Haleakala, East Maui, a postshield-stage volcano of the Hawaiian island chain Geological Society of America Bulletin 115 683694 10.1130/0016-7606(2003)115<0683:NKAATG>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Smith, P.H. Bell, J.F. III Bridges, N.T. Britt, D.T. Gaddis, L. Greeley, R. Keller, H.U. Herkenhoff, K.E. Jaumann, R. Johnson, J.R. Kirk, R.L. Lemmon, M. Maki, J.N. Malin, M.C. Murchie, S.L. Oberst, J. Parker, T.J. Reid, R.J. Sablotny, R. Soderblom, L.A. Stoker, C. Sullivan, R. Thomas, N. Tomasko, M.G. Ward, W. and Wegryn, E., (1997) Results from the Mars Pathfinder camera Science 278 17581765 10.1126/science.278.5344.1758.CrossRefGoogle ScholarPubMed
Squyres, S.W. Arvidson, R.E. Bell, J.F. III Brückner, J. Cabrol, N.A. Calvin, W.M. Carr, M.H. Christensen, P.R. Clark, B.C. Crumpler, L. Des Marais, D.J. d’Uston, C. Economou, T. Farmer, J. Farrand, W.H. Folkner, W. Golombek, M.P. Gorevan, S. Grant, J.A. Greeley, R. Grotzinger, J. Haskin, L.A. Herkenhoff, K.E. Hviid, S. Johnson, J. Klingelhöfer, G. Knoll, A. Landis, G. Lemmon, M. Li, R. Madsen, M.B. Malin, M.C. McLennan, S.M. McSween, H.Y. Jr. Ming, D.W. Moersch, J. Morris, R.V. Parker, T.J. Rice, J.W. Jr. Richter, L. Rieder, R. Sims, M. Smith, M. Smith, P. Soderblom, L.A. Sullivan, R. Wänke, H. Wdowiak, T.J. Wolff, M.J. and Yen, A.S., (2004) The Spirit rover’s Athena science investigation at Gusev Crater, Mars Science 305 794799 10.1126/science.3050794.CrossRefGoogle ScholarPubMed
Squyres, S.W. Arvidson, R.E. Bell, J.F. III Brückner, J. Cabrol, N.A. Calvin, W.M. Carr, M.H. Christensen, P.R. Clark, B.C. Crumpler, L. Des Marais, D.J. d’Uston, C. Economou, T. Farmer, J. Farrand, W.H. Folkner, W. Golombek, M.P. Gorevan, S. Grant, J.A. Greeley, R. Grotzinger, J. Haskin, L.A. Herkenhoff, K.E. Hviid, S. Johnson, J. Klingelhöfer, G. Knoll, A. Landis, G. Lemmon, M. Li, R. Madsen, M.B. Malin, M.C. McLennan, S.M. McSween, H.Y. Jr. Ming, D.W. Moersch, J. Morris, R.V. Parker, T.J. Rice, J.W. Jr. Richter, L. Rieder, R. Sims, M. Smith, M. Smith, P. Soderblom, L.A. Sullivan, R. Wänke, H. Wdowiak, T.J. Wolff, M.J. and Yen, A.S., (2004) The Opportunity rover’s Athena science investigation at Meridiani Planum, Mars Science 306 16981703 10.1126/science.1106171.CrossRefGoogle ScholarPubMed
Stanjek, H. and Friedrich, R., (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected X-ray diagrams Clay Minerals 21 183190 10.1180/claymin.1986.021.2.07.CrossRefGoogle Scholar
Stearns, H.T., (1942) Origin of Haleakala Crater, Island of Maui, Hawaii Geological Society of America Bulletin 53 113 10.1130/GSAB-53-1.CrossRefGoogle Scholar
Wivel, C. and Mørup, S., (1981) Improved computational procedure for evaluation of overlapping hyperfine parameters distributions in Mössbauer spectra Journal of Physics E14 605610.Google Scholar