Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T06:46:10.083Z Has data issue: false hasContentIssue false

The Chemical Form of Vanadium (IV) in Kaolinite

Published online by Cambridge University Press:  28 February 2024

A. U. Gehring
Affiliation:
Department of Soil Science, University of California Berkeley, California 94720
I. V. Fry
Affiliation:
Department of Plant Biology, University of California Berkeley, California 94720
J. Luster
Affiliation:
Department of Soil Science, University of California Berkeley, California 94720
Garrison Sposito
Affiliation:
Department of Soil Science, University of California Berkeley, California 94720
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A combined application of electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopies with thermal methods was used to determine the chemical form of V(IV) in a Georgia kaolinite (KGa-I). Precise values of the EPR spectroscopic g-values and hyperfine coupling constants were obtained for an untreated sample (g = 1.940, A = 18.71 mT; g = 1.966, A = 7.63 mT). Heating the sample to 1000°C in steps while monitoring phase changes with EPR and FTIR spectra led to the following structural interpretations: 1) Vanadium (IV) occurs almost entirely as an isomorphically substituted species in the octahedral sheet of KGa-1 kaolinite; 2) during the dehydroxylation of kaolinite at about 500°C and the subsequent formation of metakaolinite, V(IV)-substituted octahedral sites are readily converted into truncated octahedra exhibiting fourfold coordination; and 3) in these highly distorted four-coordinated sites, V(IV) is metastable, being completely oxidized at about 800°C.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Angel, B. R., Hall, P. L. and Serratosa, B. R., 1973 Electron spin resonance studies of kaolins Proceedings 1972 International Clay Conference Madrid C.S.I.R. 4760.Google Scholar
Angel, B. R. and Vincent, W. E. J., 1978 Electron spin resonance studies of iron oxides associated with the surface of kaolins Clays and Clay Minerals 26 263272 10.1346/CCMN.1978.0260402.CrossRefGoogle Scholar
Arija, S. M., Okokpjan, S. C. and Wintruff, W., 1967 Paramagnetische Elektronen-resonanzspektren der höheren Vanadinoxide Z. Anorg. Chem. 352 102112 10.1002/zaac.19673520114.CrossRefGoogle Scholar
Ballhausen, C. J. and Gray, H. B., 1962 The electronic structure of the vanadyl ion Inorg. Chem. 1 111122 10.1021/ic50001a022.CrossRefGoogle Scholar
Beinert, H., Swartz, H., Bolton, J. R. and Borg, D. C., 1972 Flavins and flavoproteins, including iron-sulfur proteins Biological Applications of Electron Spin Resonance New York Wiley-Interscience 351410.Google Scholar
Bernas, B., 1968 A new method for the decomposition and comprehensive analysis of silicates by atomic absorption spectrometry Anal. Chem. 40 16821686 10.1021/ac60267a017.CrossRefGoogle Scholar
Brindley, G. W. and Nakahaira, M., 1959 The kaolinite-mullite reaction series: II, metakaolinite J. Am. Ceram. Soc. 42 314318 10.1111/j.1151-2916.1959.tb14315.x.CrossRefGoogle Scholar
Clark, R. J. H., 1968 The Chemistry of Titanium and Vanadium Amsterdam Elsevier.Google Scholar
Cotton, F. A. and Wilkinson, G., 1989 Advanced Inorganic Chemistry 5 New York John Wiley.Google Scholar
Cuttler, A. H., 1980 The behaviour of synthetic 57Fe-doped kaolin: Mössbauer and electron paramagnetic resonance studies Clay Miner. 15 429444 10.1180/claymin.1980.015.4.10.CrossRefGoogle Scholar
Farmer, V. C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Gehring, A. U. and Karthein, R., 1990 An ESR and calorimetric study of iron oolitic samples from the Northampton ironstone Clay Miner. 25 303311 10.1180/claymin.1990.025.3.06.CrossRefGoogle Scholar
Gehring, A. U., Fry, I. V., Luster, J. and Sposito, G., 1993 Vanadium (IV) in a multimineral lateritic saprolite: A ther-moanalytic and spectroscopic study Soil Sci. Soc. Am. J. 57 868873 10.2136/sssaj1993.03615995005700030038x.CrossRefGoogle Scholar
Goodman, B. A. and Raynor, J. B., 1970 Electron spin resonance of transition metal complexes Adv. Inorg. Chem. Radiochem. 13 135362 10.1016/S0065-2792(08)60336-2.CrossRefGoogle Scholar
Hall, P. L., 1980 The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties Clay Miner. 15 321335 10.1180/claymin.1980.015.4.01.CrossRefGoogle Scholar
Jones, J P E Angel, B. R. and Hall, P. L., 1974 Electron spin resonance studies of doped synthetic kaolinite. II Clay Miner. 10 257270 10.1180/claymin.1974.010.4.04.CrossRefGoogle Scholar
Leonard, A. J., 1977 Structural analysis of the transition phases in the kaolinite-mullite thermal sequence J. Am. Ceram. Soc. 60 3743 10.1111/j.1151-2916.1977.tb16089.x.CrossRefGoogle Scholar
Lombardi, G., Russell, J. D. and Keller, W. D., 1987 Compositional and structural variations in the size fractions of a sedimentary and hydrothermal kaolin Clays & Clay Minerals 35 321335 10.1346/CCMN.1987.0350501.CrossRefGoogle Scholar
MacKenzie, K J D Brown, I W M Meinhold, R. H. and Bowden, M. E., 1985 Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I. Metakaolinite J. Am. Ceram. Soc. 68 293297 10.1111/j.1151-2916.1985.tb15228.x.CrossRefGoogle Scholar
McBride, M. B., 1979 Mobility and reactions of VO2+ on hydrated smectite surfaces Clays & Clay Minerals 27 9196 10.1346/CCMN.1979.0270203.CrossRefGoogle Scholar
McBride, M. B. and Perry, D. L., 1990 Electron spin resonance spectroscopy Instrumental Surface Analysis of Geological Materials New York VCH Publ. 233281.Google Scholar
Meads, R. E. and Malden, P. J, 1975 Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Miner. 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Percival, H. J., Duncan, J. F. and Foster, P. K., 1974 Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra J. Am. Ceram. Soc. 57 5761 10.1111/j.1151-2916.1974.tb10813.x.CrossRefGoogle Scholar
Van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and Other Nonmetallic Minerals Oxford Per-gamon.Google Scholar
Watanabe, T., Shimizu, H., Nagasawa, K., Masuda, A. and Saito, H., 1987 29Si and 27Al-MAS/NRM study of the thermal transformation of kaolinite Clay Miner. 22 3748 10.1180/claymin.1987.022.1.04.CrossRefGoogle Scholar