Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T17:32:51.452Z Has data issue: false hasContentIssue false

Clay Mineralogy and Chemical Composition of Bentonites from the Gourougou Volcanic Massif (Northeast Morocco)

Published online by Cambridge University Press:  01 January 2024

Mohamed Ddani
Affiliation:
HYDRASA-UMR 6532 CNRS, Université de Poitiers, 40, avenue de Recteur Pineau, 86022 Poitiers, France Laboratoire de Géologie appliquée, Université Mohammed V, Faculté des Sciences Agdal, Département de Sciences de la Terre, avenue Ibn Batouta, BP 1014, Rabat, Morocco
Alain Meunier*
Affiliation:
HYDRASA-UMR 6532 CNRS, Université de Poitiers, 40, avenue de Recteur Pineau, 86022 Poitiers, France
Mohamed Zahraoui
Affiliation:
Laboratoire de Géologie appliquée, Université Mohammed V, Faculté des Sciences Agdal, Département de Sciences de la Terre, avenue Ibn Batouta, BP 1014, Rabat, Morocco
Daniel Beaufort
Affiliation:
HYDRASA-UMR 6532 CNRS, Université de Poitiers, 40, avenue de Recteur Pineau, 86022 Poitiers, France
Mohamed El Wartiti
Affiliation:
Laboratoire de Géologie appliquée, Université Mohammed V, Faculté des Sciences Agdal, Département de Sciences de la Terre, avenue Ibn Batouta, BP 1014, Rabat, Morocco
Claude Fontaine
Affiliation:
HYDRASA-UMR 6532 CNRS, Université de Poitiers, 40, avenue de Recteur Pineau, 86022 Poitiers, France
Boubker Boukili
Affiliation:
Laboratoire de Géologie appliquée, Université Mohammed V, Faculté des Sciences Agdal, Département de Sciences de la Terre, avenue Ibn Batouta, BP 1014, Rabat, Morocco
Benacer El Mahi
Affiliation:
Laboratoire de Géologie appliquée, Université Mohammed V, Faculté des Sciences Agdal, Département de Sciences de la Terre, avenue Ibn Batouta, BP 1014, Rabat, Morocco
*
*E-mail address of corresponding author: alain.meunier@hydrasa.univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Gourougou volcanic massif (northeastern Morocco) is actively prospected for bentonite deposits. Five bentonites originating from different environments were selected for the present study: hydrothermal alteration of obsidian perlite glass inside the volcanoes themselves (Providencia and Tribia deposits); alteration of pyroclastic flows in a marine shallow water to lagoonal lacustrine environment (Ibourhardayn deposit); ash falls in marine or lacustrine systems (Moulay Rachid and Melg el Ouidan (formerly Camp Berteau) deposits). All of these bentonites were probably formed from volcanic glass originating from a rhyolitic magma at different stages of differentiation as shown by slight variations of REE and incompatible element abundances. The crystal-chemical characteristics of the smectite vary according to alteration conditions: beidellite predominates in hydrothermal systems, whereas montmorillonite predominates in lagoonal and lacustrine environments, and mixed-layer beidellite-montmorillonite in the sea-water-altered pyroclastic flows. All these dioctahedral smectites exhibit a heterogeneous distribution of charge as shown by the presence of partially expandable (1 EG) or non- expandable (0 EG) layers in the K-saturation state. The proportion of the collapsed or partially expandable layers is not related to the average layer charge or to the cation exchange capacity. This militates for an overall heterogeneous charge distribution. Compared to other natural or experimental alteration systems of similar rhyolitic glass, the formation of beidellite or montmorillonite appears to be controlled by the amounts of Mg in the system.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Ait Brahim, L., (1991) Tectoniques cassantes et états de contraintes récentes au Nord du Maroc Morocco PhD thesis, Université Mohammed V Rabat.Google Scholar
Benson, R.H. Rakic-El-Bied, K. and Bonaduce, G., (1991) An important current reversal (influx) in the Rifain corridor (Morocco) at the Tortonian-Messinian Boundary: the end of Tethys ocean Paleoceanography 6 164192.Google Scholar
Berry, R., (1999) Eocene and Oligocène Otay-type waxy bentonites of San Diego county and Baja California: chemistry, mineralogy, petrology and plate tectonic implications Clays and Clay Minerals 47 7083.Google Scholar
Boles, J.R. and Surdam, R.C., (1979) Diagenesis of volcanogenie sediments in a Tertiary saline lake, Wagon Red Formation American Journal of Science 279 832853.Google Scholar
Calarge, L. Lanson, B. Meunier, A. and Formoso, M.L., (2003) The smectitic minerals in a bentonite deposit from Melo (Uruguay) Clay Minerals 38 2534.Google Scholar
Christidis, G., (1998) Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399.Google Scholar
Christidis, G., (2001) Formation and growth of smectites in bentonites: a case study from Kimolos island, Aegean, Greece Clays and Clay Minerals 49 204215.Google Scholar
Christidis, G. and Dunham, A.C., (1993) Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks. A case study from Milos Island, Greece Clay Minerals 28 255275.Google Scholar
Christidis, G. and Dunham, A.C., (1997) Compositional variations in smectites: Part II: Alteration of acidic precursors. A case study from Milos Island, Greece Clay Minerals 32 253270.Google Scholar
Claret, F. Bauer, A. Schäfer, T. Griffault, L. and Lanson, B., (2002) Experimental investigation of the interaction of clays with high pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France) Clays and Clay Minerals 50 633646.Google Scholar
Davies, D.K. Almon, W.R. Bonis, S.B. and Hunter, B.E., (1979) Deposition and diagenesis of Tertiary-Holocene volcaniclastics, Guatemala SEPM Special Publication 26 281306.Google Scholar
De La Fuente, S. Cuadros, J. Fiore, S. and Linares, J., (2000) Electron microscopy study of volcanic pyroclastic flow alteration to illite-smectite under hydrothermal conditions Clays and Clay Minerals 48 339350.Google Scholar
Desprairies, A. and Bonnet-Courtois, C., (1980) Relation entre la composition des smectites d’altération sous-marine et leur cortège de terres rares Earth and Planetary Science Letters 48 124130.Google Scholar
Drits, V.A. Lindgreen, H. Sakharov, B.A. and Salyn, A.S., (1997) Sequence structure transformation of illite-smectitevermiculite during diagenesis of Upper Jurassic shales, North Sea Clay Minerals 33 351371.Google Scholar
Duggen, S. Hoernle, K. van den Bogaard, P. and Harris, C., (2004) Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis Earth and Planetary Science Letters 218 91108.Google Scholar
El Bakkali, S., (1995) Volcanologie et magmatologie du système du Gourougou (Rif oriental, Maroc) France PhD thesis, Univertité Biaise Pascal, Clermont-Ferrand H.Google Scholar
Evensen, G.R. Hamilton, P.J. and O’Nions, R.K., (1978) Rareearth abundances in chondritic meteorites Geochimica et Cosmochimica Acta 42 11991212.Google Scholar
Fiore, S. Huertas, F.J. Huertas, J. and Linares, J., (2001) Smectite formation in rhyolite obsidian as inferred by microscopic (SEM-TEM-AEM) investigation Clay Minerals 36 489500.Google Scholar
Hein, J.R. and Scholl, D.W., (1978) Diagenesis and distribution of late Cenozoic volcanic sediments in the southern Bering Sea Geological Society of America Bulletin 89 197210.Google Scholar
Grim, R.E. and Güven, N. (1978) Bentonites, Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, 24, Elsevier, Amsterdam, 256 pp.Google Scholar
Hernandez, J., (1983) Le volcanisme Miocène du Rif Oriental (Maroc): Géologie, pédologie et minéralogie d’une province shoshonitique France PhD thesis, Université Pierre et Marie Curie, Paris VI.Google Scholar
Hernandez, J., (1986) Pétrologie du massif volcanique de Guiliz (Maroc Oriental): Cristallisation fractionnée, mélange de magmas et transferts de fluides dans une série shoshonitique Journal of African Earth Sciences 5 4 381399.Google Scholar
Hofmann, U. and Kiemen, R., (1950) Verlust der Austauschfähigkeit von Lithiuminonen an bentonit durch Erhitzung Zeitschrift für Anorganische und Allgemeine Chemie 262 9599.Google Scholar
Huertas, F.J. Cuadros, J. Huertas, F. and Linares, J., (2000) Experimental study of the hydrothermal formation of smectite in the beidellite-saponite series American Journal of Science 300 504527.Google Scholar
Huff, W.D. Anderson, T.B. Rundle, C.C. and Odin, G.S., (1991) Chemostratigraphy, K-Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands-Down-Longford terrane, British Isles Journal of the Geological Society 148 861868.Google Scholar
Imbert, T. and Desprairies, A., (1987) Neoformation of halloysite on volcanic glass in a marine environment Clay Minerals 31 8191.Google Scholar
Inoue, A. Bouchet, A. Velde, B. and Meunier, A., (1989) A convenient technique to estimate smectite layer percentage in randomly interstratified illite/smectite minerals Clays and Clay Minerals 37 227234.Google Scholar
Keller, J. Ryan, W.B.F. Ninkovich, D. and Altherr, R., (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 y as recorded in deep-sea sediments Geological Society of America Bulletin 89 591–564.Google Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146.Google Scholar
Linares, J., (1985) The process of bentonite formation in Cabo de Gata, Almeréa, Spain Mineralogica y Petrographica Acta 29-A 1733.Google Scholar
Maury, R.C. Fourcade, S. Coulon, C. El Azzouzi, M. Bellon, H. Coutelle, A. Ouabadi, A. Semroud, B. Megartsi, M. Cotten, J. Belanteur, O. Louni-Hacini, A. Pique, A. Cardevila, R. Hernandez, J. and Rehault, J.P., (2000) Postcollisional neogene magmatism of the Mediterranean Maghreb margin: a consequence of slab break off Comptes Rendus de l’Académie des Sciences, Paris 331 159173.Google Scholar
Meunier, A. and Velde, B., (1989) Solid solutions in I/S mixed layer minerals and illite American Mineralogist 74 11061112.Google Scholar
Meunier, A. Lanson, B. and Velde, B., (2004) Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France) Clay Minerals 39 317332.Google Scholar
Moore, D.M. and Reynolds, R.C., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford, UK Oxford University Press.Google Scholar
Patrier, P. Beaufort, D. Mas, A. and Traineau, H., (2003) Surficial clay assemblage associated with the hydrothermal activity of Bouillante (Guadeloupe, French West Indies) Journal of Volcanology and Geothermal Research 126 143156.Google Scholar
Pique, A. Ait Brahim, L. El Azzouzi, M. Maury, R.C. Bellon, H. Semroud, B. and Laville, E., (1998) Le poinçon maghrébin: contraintes tectoniques et géochimiques Comptes Rendus de l’Académie des Sciences, Paris 326 575581.Google Scholar
Plançon, A. and Drits, V.A., (2000) Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- or three-component mixed-layer minerals Clays and Clay Minerals 48 5762.Google Scholar
Reynolds, R.C., (1992) X-ray diffraction studies of illite/smectite from rocks, <1 μ randomly oriental powders, and <1 μm oriented powder aggregates. The absence of laboratory-induced artifacts Clays and Clay Minerals 40 387396.Google Scholar
Sato, T. Watanabe, T. and Otsuka, R., (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113.Google Scholar
Senkayi, A.L. Dixon, J.B. Hossner, L.R. Abder-Ruhman, M. and Fanning, D.S., (1984) Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua formation of East-Central Texas Clays and Clay minerals 32 259271.Google Scholar
Weaver, C.E., (1989) Clay, Muds and Shales. Amsterdam Elsevier.Google Scholar
Yamada, H. Yoshioka, K. Tamura, K. Fujii, K. and Nakazawa, H., (1999) Compositional gap in dioctahedraltrioctahedral smectite system: beidellite-saponite pseudobinary join Clays and Clay Minerals 47 803810.Google Scholar
Zielinski, R.A., (1979) Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T=120°C, P=210 kg/cm2 Chemical Geology 27 4763.Google Scholar
Zielinski, R.A., (1980) Stability of glass in the geologic environment: some evidence from studies of natural silicate glasses Nuclear Technology 51 197200.Google Scholar
Zielinski, R.A., (1982) The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome formation, Colorado, USA Chemical Geology 35 185204.Google Scholar
Zielinski, R.A., (1985) Element mobility during alteration of silicic ash to kaolinite a study of tonstein Sedimentology 32 567579.Google Scholar