Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T07:13:07.232Z Has data issue: false hasContentIssue false

Clay-Porphyrin Systems: Spectroscopic Evidence of TMPyP Protonation, non-Planar Distortion and Meso Substituent Rotation

Published online by Cambridge University Press:  01 January 2024

Patrícia Moura Dias
Affiliation:
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP, Brazil, CEP 05508-900
Dalva Lúcia A. de Faria
Affiliation:
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP, Brazil, CEP 05508-900
Vera R. Leopoldo Constantino*
Affiliation:
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP, Brazil, CEP 05508-900
*
*E-mail address of corresponding author: vrlconst@iq.usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interaction of the water-soluble 5,10,15,20-tetrakis(l -methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with different 2:1 phyllosilicates was examined by Raman and UV-visible spectroscopies. The clay samples were saturated with the tetracationic porphyrin and isolated from the aqueous suspension. A red shift of the Soret band was observed for all the clay-TMPyP systems in the order vermiculite < Laponite < mica-smectite (Syn-1) < montmorillonite (SWy-2). Furthermore, three components were observed for the Soret band (at ~425, 455 and 488 nm). Raman spectra of the isolated solids excited at 457.9 nm, 488.0 nm and 514.5 nm suggest the occurrence of porphyrin protonation, nonplanar distortion and rotation of the meso substituent. Based on the vibrational data, an acidity scale was proposed for the clays: vermiculite < Laponite < SWy-2 < Syn-1. The relative contribution of the protonated spectra is larger at 457.9 nm than at 488.0 nm, suggesting that the peak at 455 nm corresponds to the protonated species. In Laponite, the relative intensity of the meso substituent band at ~1635 cm-1 indicates that the dihedral angle formed between the porphyrin and the methyl-pyridyl rings decreased in the non-protonated porphyrin as a consequence of intercalation. Raman data are thus consistent with the presence of at least two porphyrin species in resonance at 457.9 nm: the protonated and a more planar non-protonated porphyrin. At 488.0 nm the number of enhanced modes increases suggesting a decrease in the porphyrin symmetry. This allows assignment of the absorption band centered at 488 nm to a non-planar porphyrin conformation.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Alberti, G. and Costantino, U., (1996) Layered solids and their intercalation chemistry Solid-State Supramolecular Chemistry: Two- and Three-Dimensional Inorganic Networks 7 123.Google Scholar
Albrecht, A.C., (1961) Theory of Raman intensities Journal of Chemical Physics 34 14761484 10.1063/1.1701032.CrossRefGoogle Scholar
Baker, E.W. and Palmer, S.E., (1978) Geochemistry of porphyrins The Porphyrins 1 485551 10.1016/B978-0-12-220101-1.50018-4.CrossRefGoogle Scholar
Bedioui, F., (1995) Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts — An overview Coordination Chemistry Reviews 144 3968 10.1016/0010-8545(94)08000-H.CrossRefGoogle Scholar
Bergaya, F. and Van Damme, H., (1982) Stability of metalloporphyrins adsorbed on clays — A comparative study Geochimica et Cosmochimica Acta 46 349360 10.1016/0016-7037(82)90226-5.CrossRefGoogle Scholar
Borden, D. and Giese, R.F., (2001) Baseline studies of the Clay Minerals Society source clays: Cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445 10.1346/CCMN.2001.0490510.CrossRefGoogle Scholar
Cady, S.S. and Pinnavaia, T.J., (1978) Porphyrin intercalation in mica-type silicates Inorganic Chemistry 17 15011507 10.1021/ic50184a022.CrossRefGoogle Scholar
Carrado, K.A. and Winans, R.E., (1990) Interactions of water-soluble porphyrins and metalloporphyrins with smectite clay surfaces Chemistry of Materials 2 328335 10.1021/cm00009a027.CrossRefGoogle Scholar
Carrado, K.A. and Wasserman, S.R., (1996) Stability of Cu(II)- and Fe(III)-porphyrins on montmorillonite clay: an X-ray absorption study Chemistry of Materials 8 219225 10.1021/cm950330w.CrossRefGoogle Scholar
Carrado, K.A. Anderson, K.B. Grutkoski, P.S. and Bein, T., (1992) Thermal analysis of porphyrin-clay complexes Supramolecular Architecture — Synthetic Control in Thin Films and Solids Washington D.C. ACS Symposium Series 155165 10.1021/bk-1992-0499.ch012.CrossRefGoogle Scholar
Cenens, J. and Schoonheydt, R.A., (1988) Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension Clays and Clay Minerals 36 214224 10.1346/CCMN.1988.0360302.CrossRefGoogle Scholar
Chemia, Z. and Gill, D., (1999) Flattening of TMPyP adsorbed on laponite. Evidence in observed and calculated UV-vis spectra Langmuir 15 16251633 10.1021/la9803676.Google Scholar
Chibwe, M. Ukrainczyk, L. Boyd, S.A. and Pinnavaia, T.J., (1996) Catalytic properties of biomimetic metallomacrocycles intercalated in layered double hydroxides and smectite clay: the importance of edge-site access Journal of Molecular Catalysis 113A 249256 10.1016/S1381-1169(96)00051-9.CrossRefGoogle Scholar
Chipera, S.J. and Bish, D.L., (2001) Baseline studies of the Clay Minerals Society source clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 598–409 10.1346/CCMN.2001.0490507.CrossRefGoogle Scholar
Coelho, A.C.V., (1986) Estudo, em escala de laboratorio, do inchamento em agua de vermiculitas brasileiras tratadas com solupoes salinas inorganicas Sao Paulo, Brazil Universidade de Sao Paulo.Google Scholar
Dias, P.M. de Faria, D.L.A. and Constantino, V.R.L., (2000) Spectroscopic studies on the interaction of tetramethylpyr-idylporphyrins and cationic clays Journal of Inclusion Phenomena and Macrocyclic Chemistry 38 251266 10.1023/A:1008173315471.CrossRefGoogle Scholar
Drain, C.M. Gentemann, S. Roberts, J.A. Nelson, N.Y. Medforth, C.J. Jia, S.L. Simpson, M.C. Smith, K.M. Fajer, J. Shelnutt, J.A. and Holten, D., (1998) Picosecond to microsecond photodynamics of a non-planar nickel porphyrin: Solvent dielectric and temperature effects Journal of the American Chemical Society 120 37813791 10.1021/ja974101h.CrossRefGoogle Scholar
Giannelis, E.P., (1990) Highly organized molecular assemblies of porphyrin guest molecules in mica-type silicates — Influence of guest host interactions on molecular-organization Chemistry of Materials 2 627629 10.1021/cm00012a002.CrossRefGoogle Scholar
Gouterman, M., (1978) Optical spectra and electronic structure of porphyrins and related rings The Porphyrins 3 1165.Google Scholar
Jacobs, KY RA, (1999) Spectroscopy of methylene blue-smectite suspensions Journal of Colloid and Interface Science 220 103111 10.1006/jcis.1999.6513.CrossRefGoogle ScholarPubMed
Jacobs, K.Y. and Schoonheydt, R.A., (2001) Time dependence of the spectra of methylene blue-clay mineral suspensions Langmuir 17 51505155 10.1021/la010141u.CrossRefGoogle Scholar
Kalyanasundaram, K., (1984) Photochemistry of water-soluble porphyrins — comparative study of isomeric tetrapyridyl(N-methylpyridiniumyl)porphyrin and tetrakis(N-methylpyridiniumyl)porphyrins Inorganic Chemistry 23 24532459 10.1021/ic00184a019.CrossRefGoogle Scholar
Kaufherr, N. Yariv, S. and Heller, L., (1971) Effect of exchangeable cations on sorption of chlorophyllin by montmorillonite Clays and Clay Minerals 19 193200 10.1346/CCMN.1971.0190308.CrossRefGoogle Scholar
Kosiur, D.R., (1977) Porphyrin adsorption by clay-minerals Clays and Clay Minerals 25 365371 10.1346/CCMN.1977.0250503.CrossRefGoogle Scholar
Kumble, R. Loppnow, G.R. Hu, S.Z. Mukherjee, A. Thompson, M.A. and Spiro, T.G., (1995) Studies of the vibrational and electronic-structure of the SI excited states of beta-substituted porphyrins by picosecond time-resolved resonance Raman spectroscopy Journal of Physical Chemistry 99 58095816 10.1021/j100016a014.CrossRefGoogle Scholar
Kuykendall, V.G. and Thomas, J.K., (1990) Photophysical investigation of the degree of dispersion of aqueous colloidal clay Langmuir 6 13501356 10.1021/la00098a005.CrossRefGoogle Scholar
Laporte, Inc. (Widnes, UK) Laponite, The Technical Directory, 24 pp.Google Scholar
Martinez-Lorente, M.A. Battioni, P. Kleemiss, W. Bartoli, J.F. and Mansuy, D., (1996) Manganese porphyrins covalently hound to silica and montmorillonite K10 as efficient catalysts for alkene and alkane oxidation hy hydrogen peroxide Journal of Molecular Catalysis 113A 343353 10.1016/S1381-1169(96)00109-4.CrossRefGoogle Scholar
Milgrom, L.R., (1997) The Colours of Life — an Introduction to the Chemistry of Porphyrins and Related Compounds New York Oxford University Press.Google Scholar
Moll, W.F. Jr., (2001) Baseline studies of the Clay Minerals Society source clays: Geological origin Clays and Clay Minerals 49 374380 10.1346/CCMN.2001.0490503.CrossRefGoogle Scholar
Monaco, R.R. and Zhao, M., (1993) Computational studies of peripheral ring twisting in meso-N-methyl pyridyl-suhstituted porphyrins International Journal of Quantum Chemistry 46 701709 10.1002/qua.560460604.CrossRefGoogle Scholar
Neumann, M.G. Schmitt, C.C. and Gessner, F., (1996) Time-dependent spectrophotometric study of the interaction of basic dyes with clays II: Thionine on natural and synthetic montmorillonites and hectorites Journal of Colloid and Interface Science 177 495501 10.1006/jcis.1996.0063.CrossRefGoogle Scholar
Onaka, M. Shinoda, T. Izumi, Y. and Nolen, E., (1993) Clay-mediated meso-tetraarylporphyrin synthesis Tetrahedron Letters 34 26252628 10.1016/S0040-4039(00)77641-6.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Maqueda, C., Yariv, S. and Cross, H., (2002) Interactions of vermiculites with organic compounds Organo-clay Complexes and Interactions New York Marcel Dekker 113173.Google Scholar
Rouxel, J., Toumoux, M. and Brec, R., (1994) editors () Soft Chemistry Routes to New Materials — Chimie Douce. Materials Science Forum, v. 152–153. Trans Tech Publications Ltd., Switzerland, 402 pp.Google Scholar
Shelnutt, J.A. Medforth, C.J. Berber, M.D. Barkigia, K.M. and Smith, K.M., (1991) Relationships between structural parameters and Raman frequencies for some planar and nonplanar Nickel(II) porphyrins Journal of the American Chemical Society 113 40774087 10.1021/ja00011a004.CrossRefGoogle Scholar
Shelnutt, J.A. Song, X. Ma, J. Jia, S. Jentzen, W. and Medforth, C.J., (1998) Non-planar porphyrins and their significance in proteins Chemical Society Reviews 27 3141 10.1039/a827031z.CrossRefGoogle Scholar
Stone, A. and Fleischer, E.B., (1968) The molecular and crystal structure of porphyrin diacids Journal of the American Chemical Society 90 27352748 10.1021/ja01013a001.CrossRefGoogle Scholar
Sun, J. Chang, C.K. and Loehr, T.M., (1997) Q-hand resonance Raman enhancement of Fe-CO vibrations in ferrous chlorin complexes: Possible monitor of axial ligands in d cytochromes Journal of Physical Chemistry B 101 14761483 10.1021/jp963439f.CrossRefGoogle Scholar
Sung-Suh, H.M. Luan, Z. and Kevan, L., (1997) Photoionization of porphyrins in mesoporous siliceous MCM-41, AlMCM-41, and TiMCM-41 molecular sieves Journal of Physical Chemistry B 101 1045510463 10.1021/jp972772w.CrossRefGoogle Scholar
Takagi, S. Tryk, D.A. and Inoue, H., (2002) Photochemical energy transfer of cationic porphyrin complexes on clay surface Journal of Physical Chemistry B 106 54555460 10.1021/jp0200977.CrossRefGoogle Scholar
Takagi, S. Shimada, T. Eguchi, M. Yui, T. Yoshida, H. Tryk, D.A. and Inoue, H., (2002) High-density adsorption of cationic porphyrins on clay layer surfaces without aggregation: The size-matching effect Langmuir 18 22652272 10.1021/la011524v.CrossRefGoogle Scholar
Takeuchi, T. Gray, H.B. Goddard, W.A. III, (1994) Electronic structures of halogenated porphyrins: spectroscopic properties of ZnTFPPX8 (TFPPX8= Ocata-B-halotetrakis(pentafluorophenyl)porphyrin; X=Cl, Br) Journal of the American Chemical Society 116 97309732 10.1021/ja00100a043.CrossRefGoogle Scholar
Ukrainczyk, L. Chihwe, M. Pinnavaia, T.J. and Boyd, S.A., (1994) Esr study of Cobalt(II) tetrakis(N-methyl-4-pyridiniumyl)porphyrin and Cobalt(II) tetrasulfophthalocyanine intercalated in layered aluminosilicates and a layered double hydroxide Journal of Physical Chemistry 98 26682676 10.1021/j100061a026.CrossRefGoogle Scholar
Ukrainczyk, L. Chihwe, M. Pinnavaia, T.J. and Boyd, S.A., (1995) Reductive dechlorination of carbon-tetrachloride in water catalyzed hy mineral supported hiomimetic cohalt macrocycles Environmental Science & Technology 29 439445 10.1021/es00002a021.CrossRefGoogle Scholar
Unger, E. Dreyhrodt, W. and SchweitzerStenner, R., (1997) Conformational properties of nickel(II) meso-tetraphenylporphyrin in solution. Raman dispersion spectroscopy reveals the symmetry of distortions for a non-planar conformer Journal of Physical Chemistry A 101 59976007 10.1021/jp970606i.CrossRefGoogle Scholar
Van Damme, H. Crespin, M. Ohrecht, F. Cruz, M.I. and Fripiat, J.J., (1978) Acid-hase and complexation behavior of porphyrins on intra-crystal surface of swelling clays — Meso-tetraphenylporphyrin and meso-tetra(4-pyridyl)porphyrin on montmorillonites Journal of Colloid and Interface Science 66 4354 10.1016/0021-9797(78)90182-0.CrossRefGoogle Scholar
Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry: for Clay Technologists, Geologists and Soil Scientists 2nd edition New York John Wiley & Sons.Google Scholar
Wachs, I.E., Lewis, I.R. and Edwards, H.G.M., (2001) Raman Spectroscopy of Catalysts Handbook of Raman Spectroscopy — From the Research Laboratory to the Process Line New York Marcel Dekker 799833.Google Scholar
Wright, A.C. Granquist, W.T. and Kennedy, J.V., (1972) Catalysis hy layer silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay Journal of Catalysis 25 6580 10.1016/0021-9517(72)90202-3.CrossRefGoogle Scholar
Yariv, S., (1992) The effect of tetrahedral substitution of Si hy Al on the surface acidity of the oxygen plane of clay minerals International Review in Physical Chemistry 11 345375 10.1080/01442359209353275.CrossRefGoogle Scholar