Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T22:30:07.807Z Has data issue: false hasContentIssue false

Comparison of the Traditional Enslin-Neff Method and the Modified Dieng Method for Measuring Water-Uptake Capacity

Published online by Cambridge University Press:  01 January 2024

Stephan Kaufhold*
Affiliation:
BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
Reiner Dohrmann
Affiliation:
BGR Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany LBEG Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655 Hannover, Germany
*
* E-mail address of corresponding author: s.kaufhold@bgr.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method for the determination of the water-uptake capacity of powders which is said to be applicable to viscose silk, specific celluloses, soap, paint, glue, gelatine, adhesives based on starch, biological samples, and soils, was proposed by Enslin in 1933 and has been improved several times since then. Today in Germany, the so-called Enslin-Neff method is used by the clay industry, in civil engineering, and in soil science. Many authors have identified the influence of evaporation on the results obtained using this method and the latest modification of the Enslin-Neff method was introduced by Dieng in 2005 where a balance was used instead of a burette to record the water-uptake capacity. It is proved here that the Dieng method actually operates correctly, independent of relative humidity. Therefore, a significantly improved reproducibility of the Dieng method compared to the traditional method was expected. However, it was found that the Dieng apparatus has specific sources of error (e.g. constance of the balance over 24 h) and varying the relative humidity no longer has a systematic affect on the results.

The reproducibility of the traditional Enslin-Neff method is strongly influenced by variations in ambient conditions in the laboratory (particularly temperature and relative humidity). Application of the Dieng method in different laboratories with varying ambient conditions will lead to improved reproducibility and comparability of results. In addition, results from the Dieng apparatus can be collected using a connected computer and this represents an important advance also.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Bergmann, J. and Kleeberg, R. (1998) Rietveld analysis of disordered layer silicates. Proceedings of the 5thEuropean Conference on Powder Diffraction (EPDIC 5), Parma, Italy, Materials Science Forum, 278–281 part1 pp. 300305.CrossRefGoogle Scholar
Böhler, U., 1993 Der Wasseraufnahmeversuch nach Enslin/Neff zur Qualitätskontrolle im Deponiebau Müll und Abfall 11/ 93 813820.Google Scholar
Demberg, W., 1991 Über die Ermittlung des Wasseraufnahmevermögens feinkörniger Böden mitdem Gerät nach Enslin/Neff Geotechnik 14 125131.Google Scholar
Dieng, M.A., 2005 Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät Bautechnik 82 2832 10.1002/bate.200590024.CrossRefGoogle Scholar
Dieng, M.A., 2006 Bestimmungsmethode der Konsistenzgrenzen mittels Wasseraufnahmeversuchen Bautechnik 83 492496 10.1002/bate.200610042.CrossRefGoogle Scholar
DIN 18132 (1995) Baugrund. Versuche und Versuchsgeräte. Bestimmung des Wasseraufnahmevermögens, Germany.Google Scholar
Dohrmann, R., 2006 Cation exchange capacity methodology. III: Correct exchangeable calcium determination of calcareous clays using a new silver-thiourea method Applied Clay Science 34 4757 10.1016/j.clay.2006.02.010.CrossRefGoogle Scholar
Enslin, O., 1933 Über einen Apparat zur Messung der Flüssigkeitsaufnahme von quellbaren und porösen Stoffen und zur Charakterisierung der Benetzbarkeit Die chemische Fabrik 13 147148.Google Scholar
Kaufhold, S. and Dohrmann, R., 2008 Detachment of colloidal particles from bentonites in water Applied Clay Science 39 5059 10.1016/j.clay.2007.04.008.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Koch, D. and Houben, G., 2008 The pH of aqueous bentonite suspensions Clays and Clay Minerals 56 338343 10.1346/CCMN.2008.0560304.CrossRefGoogle Scholar
Köhler, R. and Herzog, G., 1965 Die Ermittlung der maximalen Wasseraufnahmefähigkeit, insbesondere mit dem Enslingerät neuer Bauart Zeitschrift für angewandte Geologie 11 2933.Google Scholar
Kugler, H., Ottner, F., Schwaighofer, B., and Strasser, W. (2002) Die Modifizierung des Wasseraufnahmeversuches nach Enslin-Neff. Pp. 125142 in: Berichte der DTTG (Ottner, H. and Gier, S., editors). Vienna, Austria.Google Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Neff, K.H., 1959 Über die Messung der Wasseraufnahme ungleichförmiger bindiger anorganischer Bodenarten in einer neuen Ausführung des Enslingerätes Die Bautechnik 39 415421.Google Scholar
Ufer, K. Roth, G. Kleeberg, R. Stanjek, H. Dohrmann, R. and Bergmann, J., 2004 Description and quantification of powder X-ray diffractograms of turbostratically disordered layer structures with a Rietveld compatible approach Zeitschrift für Kristallographie 219 519527.CrossRefGoogle Scholar
Ufer, K. Stanjek, H. Roth, G. Dohrmann, R. Kleeberg, R. and Kaufold, S., 2008 Quantitative phase analysis of bentonites with the Rietveld method Clays and Clay Minerals 56 272282 10.1346/CCMN.2008.0560210.CrossRefGoogle Scholar
Van der Kamp, H.V. Bolhuis, G.K. de Boer, A.H. Lerk, C.F. and Lie-A-Huen, L., 1986 The role of water uptake on tablet disintegration Pharmaceutica Acta Helvetiae 61 2229.Google Scholar