Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T07:34:36.877Z Has data issue: false hasContentIssue false

Crystallization of ‘pocket’ berthierine from the Pulsifer granitic pegmatite, Poland, Maine, USA

Published online by Cambridge University Press:  01 January 2024

Michael A. Wise*
Affiliation:
Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington D.C., 20560, USA
*
*E-mail address of corresponding author: wisem@si.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new occurrence of berthierine has been found in the Pulsifer granitic pegmatite, near Auburn, Maine. Berthierine was found in miarolitic cavities (‘pockets’) as aggregates of radial platy crystals with albite, as fracture-fillings in microcline and as fine-grained anhedral flakes with muscovite. Berthierine samples from all associations are depleted in Mg, but show variable enrichment in Mn. The textural relationships of the berthierine assemblage indicate that its formation is probably related to the dissolution of microcline in the presence of a low-temperature, neutral to alkaline, Fe-rich hydrothermal solution. This mode of occurrence is in direct contrast to the typical formation of berthierine in granitic pegmatites that is generally related to the alteration of cordierite-group minerals.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Aagaard, P. Jahren, J.S. Harstad, A.O. Nilsen, O. and Ramm, M., (2000) Formation of grain-coating chlorite in sandstones; laboratory synthesized vs. natural occurrences Clay Minerals 35 261269 10.1180/000985500546639.CrossRefGoogle Scholar
Abad-Ortega, M.M. and Mieto, F., (1995) Genetic and chemical relationships between berthierine, chlorite and cordierite nodules associated to granitic pegmatites of Sierra Albarrana (Iberian Massif, Spain) Contributions to Mineralogy and Petrology 120 327336 10.1007/BF00306511.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., (1988) Structures and compositions of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 169188 10.1515/9781501508998-011.CrossRefGoogle Scholar
Bhattacharyya, D.P., (1983) Origin of berthierine in ironstones Clays and Clay Minerals 31 173182 10.1346/CCMN.1983.0310302.CrossRefGoogle Scholar
Brindley, G.W., (1982) Chemical compositions of berthierines — a review Clays and Clay Minerals 30 153155 10.1346/CCMN.1982.0300211.CrossRefGoogle Scholar
Brown, C.D. and Wise, M.A., (2001) Internal zonation and chemical evolution of the Black Mountain granitic pegmatite, Maine The Canadian Mineralogist 39 4555 10.2113/gscanmin.39.1.45.CrossRefGoogle Scholar
Černý, P., (2000) Constitution, petrology, affiliations and categories of miarolitic pegmatites Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 30 512 (Mineralogy and Petrology of Shallow Depth Pegmatites; Papers from the First International Workshop, F. Pezotta, editor).Google Scholar
Coombs, D.S. Zhao, G. and Peacor, D.R., (2000) Manganoan berthierine, Meyers Pass, New Zealand: occurrence in the prehnite-pumpellyite facies Mineralogical Magazine 64 10371046 10.1180/002646100550038.CrossRefGoogle Scholar
Damyanov, Z. and Vassileva, M., (2001) Authigenic phyllosilicates in the middle Triassic Kremikovtsi sedimentary exhalative siderite iron formation, western Balkan, Bulgaria Clays and Clay Minerals 49 559585 10.1346/CCMN.2001.0490607.CrossRefGoogle Scholar
Falster, A.U., (1981) Minerals of the Wausau pluton Mineralogical Record 12 9397.Google Scholar
Foord, E.E., (1976) Mineralogy and petrogenesis of layered pegmatite-aplite dikes in the Mesa Grande district, San Diego County, California Stanford, California Stanford University.Google Scholar
Fritz, S.J. and Toth, T.A., (1997) An Fe-berthierine from a Cretaceous laterite: Part II. Estimation of Eh, pH and pCO2 conditions of formation Clays and Clay Minerals 45 580586 10.1346/CCMN.1997.0450409.CrossRefGoogle Scholar
Gottesmann, B. and Förster, H.-J., (2004) Sekaninaite from the Satzung granite (Erzgebirge, Germany): magmatic or xenolithic? European Journal of Mineralogy 16 483491 10.1127/0935-1221/2004/0016-0483.CrossRefGoogle Scholar
Guastoni, A. Demartin, F. and Pezzota, F., (2004) Sekaninaite delle pegmatiti granitiche di Feriolo e Baveno (VB) Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale de Milano 145 5968.Google Scholar
Hogarth, D.D., (1972) The Evans-Lou pegmatite, Quebec: a unique yttrium-niobium-bismuth-vanadium mineral assemblage Mineralogical Record 3 6977.Google Scholar
Horvath, L. and Gault, R.A., (1990) The mineralogy of Mont Saint-Hilaire, Quebec Mineralogical Record 21 284359.Google Scholar
Iijima, A. and Matsumoto, R., (1982) Berthierine and chamosite in coal measures of Japan Clays and Clay Minerals 30 264274 10.1346/CCMN.1982.0300403.CrossRefGoogle Scholar
James, R.S. Turnock, A.C. and Fawcett, J.J., (1976) The stability and phase relations of iron chlorite below 8.5 kb PH2O Contributions to Mineralogy and Petrology 56 125 10.1007/BF00375418.CrossRefGoogle Scholar
Jobin-Bevans, S. and Černý, P., (1998) The beryllian cordierite + beryl + spessartine assemblage, and secondary beryl in altered cordierite, Greer Lake granitic pegmatites, southeastern Manitoba The Canadian Mineralogist 36 447462.Google Scholar
Klekl, L.V., (1979) Regularities of chamosite distribution in bauxite of the Belgorod District of the Kursk magnetic anomaly Lithology and Mineral Resources 14 377382 (in Russian).Google Scholar
Kodama, H. and Foscolos, A.E., (1981) Occurrence of berthierine in Canadian arctic desert soils The Canadian Mineralogist 19 279283.Google Scholar
London, D., (1986) Formation of tourmaline rich gem pockets in miarolitic pegmatites American Mineralogist 71 396405.Google Scholar
London, D., (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites The Canadian Mineralogist 30 449540.Google Scholar
Morgan, G.B. VI and London, D., (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California Contributions to Mineralogy and Petrology 136 310330 10.1007/s004100050541.CrossRefGoogle Scholar
Mücke, A., (1983) Sekundäre Phosphat-und Sulfat-mineralien, ged. Schwefel sowie Schichtsilikatmineralien (Nontronit, Thuringit, Berthierin) von Hagendorf und deren genetische Stellung der Aufschluss 34 287305.Google Scholar
Nikol’skaia, N.K. Kotov, N.V. Frank-Kamenetskii, V.A. and Goilo, E.A., (1985) Hydrothermal transformation of kaolinite in iron-bearing media at elevated PH2O-T parameters Vestnik Leningradskogo Universiteta. Geologiya-Geografiya 14 814 (in Russian).Google Scholar
Peretyazho, I.S. Zagorsky, V.Y. Smirnov, S.Z. and Mikhailov, M.Y., (2004) Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia) Chemical Geology 210 91111 10.1016/j.chemgeo.2004.06.005.CrossRefGoogle Scholar
Pezzotta, F. et al. ,Pezzotta, F. (2005) et al. , The Monte Capanne pegmatites The Italian island of Elba: A mineralogical jewel in the Tuscan archipelago Connecticut, USA Lapis International LLC, East Hampton 2027.Google Scholar
Pezzotta, F. Diella, V. and Guastoni, A., (1999) Chemical and paragenetic data on gadolinite group minerals from Baveno and Cuasso al Monte, southern Alps, Italy American Mineralogist 84 782789 10.2138/am-1999-5-612.CrossRefGoogle Scholar
Porrenga, D.H., (1967) Glauconite and chamosite as depth indicators in marine environments Marine Geology 5 495501 10.1016/0025-3227(67)90056-4.CrossRefGoogle Scholar
Povondra, P., Cech, F. and Burke, E.A.J. (1984) Sodianberyllian cordierite from Gammelmorskärr, Kemiö Island, Finland, and its decomposition products. Neues Jahrbuch für Mineralogie Monatshefte, 125136.Google Scholar
Reynolds, R.C. Jr. and Bailey, S.W., (1988) Mixed layer chlorite minerals Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 601629 10.1515/9781501508998-020.CrossRefGoogle Scholar
Rohrlich, V. Price, N.B. and Calvert, S.E., (1969) Chamosite in recent sediments of Loch Etive, Scotland Journal of Sedimentary Petrology 39 624631.Google Scholar
Rose, T.R. Wise, M.A. and Brown, C.D., (1997) Renewed mining at the western quarries of Mount Apatite, Maine Rocks and Minerals 72 4448 10.1080/00357529709605004.CrossRefGoogle Scholar
Ruotsala, A.P. Pfluger, C.E. and Garnett, M., (1964) Iron-rich serpentine and chamosite from Ely, Minnesota American Mineralogist 49 9931001.Google Scholar
Seifert, F., (1976) Stability of the assemblage cordierite + K-feldspar + quartz Contributions to Mineralogy and Petrology 57 179185 10.1007/BF00405224.CrossRefGoogle Scholar
Seifert, F. and Schreyer, W., (1970) Lower temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: a redetermination Contributions to Mineralogy and Petrology 27 225238 10.1007/BF00385779.CrossRefGoogle Scholar
Slack, J.F. Jiang, W.-T. Peacor, D.R. and Okita, P.M., (1992) Hydrothermal and metamorphic berthierine from the Kidd Creek volcanogenic massive sulfide deposit, Timmins, Ontario The Canadian Mineralogist 30 11271142.Google Scholar
Stern, L.A. Brown, G.E. Jr. Bird, D.K. Jahns, R.H. Foord, E.E. Shigley, J.E. Spaulding, L.B. Jr., (1986) Mineralogy and geochemical evolution of the Little Three pegmatite-aplite layered intrusive, Ramona, California American Mineralogist 71 406427.Google Scholar
Taylor, B.E. Foord, E.E. and Friedrichsen, H., (1979) Stable isotope and fluid inclusion studies of gem-bearing granitic pegmatite-aplite dikes, San Diego County, California Contributions to Mineralogy and Petrology 68 187205 10.1007/BF00371900.CrossRefGoogle Scholar
Toth, T.A. and Fritz, S.J., (1997) An Fe-berthierine from a Cretaceous laterite: Part I. Characterization Clays and Clay Minerals 45 564579 10.1346/CCMN.1997.0450408.CrossRefGoogle Scholar
Velde, B., (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence Amsterdam and New York Elsevier.Google Scholar
Wise, M.A. and Černý, P., (1990) Beusite-triphylite inter-growths from the Yellowknife pegmatite field, Northwest Territories The Canadian Mineralogist 28 133139.Google Scholar
Wise, M.A. and Francis, C.A., (1992) Distribution, classification and geological setting of granitic pegmatites in Maine Northeastern Geology 14 8293.Google Scholar
Yates, D.M. and Rosenberg, P.E., (1997) Formation and stability of end-member illite: II. Solid equilibration experiments at 100°C to 250°C Geochimica et Cosmochimica Acta 61 31353144 10.1016/S0016-7037(97)00156-7.CrossRefGoogle Scholar
Yau, Y.-C. Peacor, D.R. Beane, R.E. Essene, E.J. and McDowell, S.D., (1988) Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California Clays and Clay Minerals 36 110 10.1346/CCMN.1988.0360101.Google Scholar
Zagorsky, V.Y. Peretyazhko, I.S. and Sapozhnikov, A.N., (1998) Boron-rich micas and chlorites from miarolitic pegmatites Zapiski Rossiyskogo Mineralogicheskogo Obschestva (Proceedings of the Russian Mineralogical Society 6 5568 (in Russian).Google Scholar
Zagorsky, V.Y. Peretyazhko, I.S. Sapozhnikov, A.N. Zhukhlistov, A.P. and Zvyagin, B.B., (2003) Borocookeite, a new member of the chlorite group from the Malkhan gem tourmaline deposit, Central Transbaikalia, Russia American Mineralogist 88 830836 10.2138/am-2003-5-611.CrossRefGoogle Scholar
Zhou, Z. and Gunter, W.D., (1996) Experimental and numerical studies of the hydrothermal stability of berthierine 30th International Geological Congress, Abstracts 3 25.Google Scholar