Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T07:57:06.344Z Has data issue: false hasContentIssue false

The CS/K Exchange in Muscovite Interlayers: An Ab Initio Treatment

Published online by Cambridge University Press:  28 February 2024

Kevin M. Rosso*
Affiliation:
W.R. Wiley Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
James R. Rustad
Affiliation:
W.R. Wiley Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Eric J. Bylaska
Affiliation:
W.R. Wiley Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Plane-wave pseudopotential total energy calculations have been applied to investigate the structure and energetics of the Cs/K exchange into interlayer sites in muscovite mica. Novel muscovite structures were designed to isolate the effects of 2:1 layer charge, cation size/interlayer site shape, and tetrahedral Al/Si substitutions on the exchange. All atom and cell-parameter optimizations were performed with the intention to mimic the constant pressure, non-isovolumetric exchange conditions thought to be found at frayed-edge sites. Under conditions where the cell parameters are allowed to relax, the overall Cs/K exchange reaction is surprisingly close to isoenergetic. The forward reaction is more strongly favored with increasing layer charge. For the condition of zero layer charge and no interlayer site distortion, the difference in the optimal interlayer spacing for Cs relative to K is very small, indicating a baseline indifference of the muscovite structure to cation size. The presence of 2:1 layer charge or tetrahedral rotations arising from Al/Si substitutions clearly change this outcome. Analysis of the dependence of the interlayer spacing on layer charge shows that while the spacing collapses with increasing layer charge for K as the interlayer cation, the reverse is true for Cs. We attribute the contrasting behavior to inherent differences in the ability of these cations to screen 2:1 layer-layer repulsions. Such effects might be involved during exchange at frayed-edge sites where interlayer spacings are increased. This is known, from experiment, to be very selective for Cs. Overall, the exchange energetics are so low that the Cs/K exchange rate and degree of irreversibility are likely to be dominated by diffusion kinetics.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Anderson, K. and Allard, B. (1983) Sorption of radionuclides on geologic media. Report No. SKBF-KBS-TR-83-07. Svensk Karnsbransterforjning.Google Scholar
Bailey, S.W. and Bailey, S.W., 1984 Crystal chemistry of the true micas Micas Washington, D.C. Mineralogical Society of America 1357 10.1515/9781501508820-006.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2000 A generalised sorption model for the concentration dependent, uptake of caesium by argillaceous rocks Journal of Contaminant Hydrology 42 141163 10.1016/S0169-7722(99)00094-7.CrossRefGoogle Scholar
Bridgeman, C.H. and Skipper, N.T., 1997 A Monte Carlo study of water at an uncharged clay surface Journal of Physics—Condensed Matter 9 40814087 10.1088/0953-8984/9/20/007.CrossRefGoogle Scholar
Bridgeman, C.H. Buckingham, A.D. Skipper, N.T. and Payne, M.C., 1996 Ab initio total energy study of uncharged 2:1 clays and their interaction with water Molecular Physics 89 879888 10.1080/00268979609482512.CrossRefGoogle Scholar
Brueeuwsma, A. and Lyklema, J., 1971 Interfacial electrochemistry of hematite (α-Fe2O3) Discussions of the Faraday Society 52 324333 10.1039/DF9715200324.CrossRefGoogle Scholar
Burns, A.F. and White, J.L., 1963 Removal of potassium alters b-dimension of muscovite Science 139 3940 10.1126/science.139.3549.39.CrossRefGoogle ScholarPubMed
Cerius2 User Guide (1997) Cerius 2. Molecular Simulations Inc.Google Scholar
Chang, F.R.C. Skipper, N.T. and Sposito, G., 1995 Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Chatterjee, A. Iwasaki, T. and Ebina, T., 2000 A novel method to correlate layer charge and the catalytic activity of 2:1 dioctahedral smectite clays in terms of binding the interlayer cation surrounded by monohydrate Journal of Physical Chemistry A 104 82168223 10.1021/jp001029s.CrossRefGoogle Scholar
Comans, R.N.J. Haller, M. and Depreter, P., 1991 Sorption of cesium on illite—nonequilibrium behavior and reversibility Geochimica et Cosmochimica Acta 55 433440 10.1016/0016-7037(91)90002-M.CrossRefGoogle Scholar
Comans, R.N.J. and Hockley, D.E., 1992 Kinetics of cesium sorption on illite Geochimica et Cosmochimica Acta 56 11571164 10.1016/0016-7037(92)90053-L.CrossRefGoogle Scholar
Cremers, A. Elsen, A. Depreter, P. and Maes, A., 1988 Quantitative analysis of radiocesium retention in soils Nature 335 247249 10.1038/335247a0.CrossRefGoogle Scholar
De Carvalho, R. and Skipper, N.T., 2001 Atomistic computer simulation of the clay-fluid interface in colloidal laponite Journal of Chemical Physics 114 37273733 10.1063/1.1343839.CrossRefGoogle Scholar
De Preter, P. Vanloon, L. Maes, A. and Cremers, A., 1991 Solid liquid distribution of radiocesium in boom clay—a quantitative interpretation Radiochimica Acta 52–3 299302.CrossRefGoogle Scholar
Dolcater, D.L. Lotse, E.G. Syers, J.K. and Jackson, M.L., 1968 Cation exchange selectivity of some clay-sized minerals and soil materials Proceedings of the Soil Science Society of America 32 795798 10.2136/sssaj1968.03615995003200060026x.CrossRefGoogle Scholar
Feller, D. Glendening, E.D. Woon, D.E. and Feyereisen, M.W., 1995 An extended basis set ab initio study of alkali metal cation water clusters Journal of Chemical Physics 103 35263542 10.1063/1.470237.CrossRefGoogle Scholar
Garcia, A. Elsasser, C. Zhu, J. Louie, S.G. and Cohen, M.L., 1992 Use of gradient-corrected functionals in total energy calculations for solids Physical Review B 46 98299832 10.1103/PhysRevB.46.9829.CrossRefGoogle ScholarPubMed
Gibbs, G.V., 1982 Molecules as models for bonding in silicates American Mineralogist 67 421450.Google Scholar
Giese, R.F. Jr, 1975 The effect of F/OH substitution on some layer-silicate minerals Zeitschift für Kristallographie 141 138144 10.1524/zkri.1975.141.1-2.138.CrossRefGoogle Scholar
Giese, R.F. Jr and Bailey, S.W., 1984 Electrostatic energy models of micas Micas Washington, D.C. Mineralogical Society of America 105144 10.1515/9781501508820-008.CrossRefGoogle Scholar
Gillan, M.J., 1989 Calculation of the vacancy formation energy in aluminum Journal of Physics–Condensed Matter 1 689711 10.1088/0953-8984/1/4/005.CrossRefGoogle Scholar
Greathouse, J. and Sposito, G., 1998 Monte Carlo and molecular dynamics studies of interlayer structure in Li(H2O)3-smectites Journal of Physical Chemistry B 102 24062414 10.1021/jp980120h.CrossRefGoogle Scholar
Gutierrez, M. and Fuentes, H.R., 1996 A mechanistic modeling of montmorillonite contamination by cesium sorption Applied Clay Science 11 1124 10.1016/0169-1317(96)00006-3.CrossRefGoogle Scholar
Hewitt, D.A. and Wones, D.R., 1975 Physical properties of some synthetic Fe-Mg-Al trioctahedral biotites American Mineralogist 60 854862.Google Scholar
Hobbs, J.D. Cygan, R.T. Nagy, K.L. Schultz, P.A. and Sears, M.P., 1997 All-atom ab initio energy minimization of the kaolinite crystal structure American Mineralogist 82 657662 10.2138/am-1997-7-801.CrossRefGoogle Scholar
Jackson, M.L., 1963 Interlayering of expansible layer silicates in soils by chemical weathering Clays and Clay Minerals 11 2946 10.1346/CCMN.1962.0110104.CrossRefGoogle Scholar
Kim, Y. and Kirkpatrick, R.J., 1997 Na-23 and Cs-133 NMR study of cation adsorption on mineral surfaces: local environments, dynamics, and effects of mixed cations Geochimica et Cosmochimica Acta 61 51995208 10.1016/S0016-7037(97)00347-5.CrossRefGoogle Scholar
Kim, Y. Kirkpatrick, R.J. and Cygan, R.T., 1996 Cs-133 NMR study of cesium on the surfaces of kaolinite and illite Geochimica et Cosmochimica Acta 60 40594074 10.1016/S0016-7037(96)00257-8.CrossRefGoogle Scholar
Kinniburgh, D.G. Jackson, M.L., Anderson, M.A. and Rubin, A.J., 1981 Cation adsorption by hydrous metal oxides and clay Adsorption of Inorganics at Solid-Liquid Interfaces Michigan Ann Arbor Science 91160.Google Scholar
Kresse, G. and Furthmuller, J., 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Physical Review B—Condensed Matter 54 1116911186 10.1103/PhysRevB.54.11169.CrossRefGoogle ScholarPubMed
Laird, D.A., 1996 Model for crystalline swelling of 2:1 phyllosilicates Clays and Clay Minerals 44 553559 10.1346/CCMN.1996.0440415.CrossRefGoogle Scholar
Laird, D.A., 1999 Layer charge influences on the hydration of expandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636 10.1346/CCMN.1999.0470509.CrossRefGoogle Scholar
Maes, E. Vielvoye, L. Stone, W. and Delvaux, B., 1999 Fixation of radiocaesium traces in a weathering sequence mica → vermiculite → hydroxy interlayered vermiculite European Journal of Soil Science 50 107115 10.1046/j.1365-2389.1999.00223.x.CrossRefGoogle Scholar
Mortland, M.M., 1958 Kinetics of potassium release from biotite Proceedings Soil Science Society of America 22 503508 10.2136/sssaj1958.03615995002200060007x.CrossRefGoogle Scholar
Ni, Y.X. and Hughes, J.M., 1996 The crystal structure of nanpingite-2M2, the Cs end-member of muscovite American Mineralogist 81 105110 10.2138/am-1996-1-213.CrossRefGoogle Scholar
Payne, M.C. Teter, M.P. Allan, D.C. Arias, T.A. and Joannopoulos, J.D., 1992 Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients Reviews of Modern Physics 64 10451097 10.1103/RevModPhys.64.1045.CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y., 1992 Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy Physical Review B—Condensed Matter 45 1324413249 10.1103/PhysRevB.45.13244.CrossRefGoogle ScholarPubMed
Rich, C.I. and Black, W.R., 1964 Potassium exchange as affected by cation size, pH, and mineral structure Soil Science 97 384390 10.1097/00010694-196406000-00004.CrossRefGoogle Scholar
Rothbauer, R., 1971 Untersuchung eines 2M1-muscovits mit Neutronenstrahlen Neues Jahrbüch für Mineralogie, Monatshefte 4 143154.Google Scholar
Scott, A.D. and Reed, M.G., 1964 Expansion of potassium-depleted muscovite Proceedings of the 13th National Conference of the Clay Minerals Society, Clays and Clay Minerals 13 247273 10.1346/CCMN.1964.0130124.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica Section A: Crystal Physics, Diffraction Theoretical & General Crystallography 5 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Shroll, R.M. and Smith, D.E., 1999 Molecular dynamics simulations in the grand canonical ensemble: application to clay mineral swelling Journal of Chemical Physics 111 90259033 10.1063/1.480245.CrossRefGoogle Scholar
Skipper, N.T. Refson, K. and McConnell, J.D.C., 1991 Computer simulation of interlayer water in 2:1 clays Journal of Chemical Physics 94 74347445 10.1063/1.460175.CrossRefGoogle Scholar
Smith, D.E., 1998 Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite Langmuir 14 59595967 10.1021/la980015z.CrossRefGoogle Scholar
Tamura, T., Bonner, W.E., Brinkley, F.S., Jacobs, D.G., Myers, O.H. and Murano, T. (1963) Mineral exchange studies. Report—Oak Ridge National Laboratory, ORNL-3492, pp. 6270.Google Scholar
Vanderbilt, D., 1990 Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Physical Review B 41 78927895 10.1103/PhysRevB.41.7892.CrossRefGoogle Scholar
Venkataramani, B. Venkateswarlu, K.S. and Shankar, J., 1978 Sorption properties of oxides Journal of Colloid and Interface Science 67 187194 10.1016/0021-9797(78)90001-2.CrossRefGoogle Scholar
Wagman, D.D. Evans, W.H. Parker, V.B. Halow, I. Bailey, S.M. and Schumm, R.H., 1968 Selected values of chemical thermodynamic properties. Tables for the first thirty-four elements in the standard order of arrangement United States National Bureau of Standards Technical Note 270–3 1264.Google Scholar
Wagman, D.D. Evans, W.H. Parker, V.B. Halow, I. Bailey, S.M. and Schumm, R.H., 1969 Selected values of chemical thermodynamic properties. Tables for elements 35 through 53 in the standard order of arrangement United States National Bureau of Standards Technical Note 270–4 1141.Google Scholar
Wang, J.W. Kalinichev, A.G. Kirkpatrick, R.J. and Hou, X.Q., 2001 Molecular modeling of the structure and energetics of hydrotalcite hydration Chemistry of Materials 13 145150 10.1021/cm000441h.CrossRefGoogle Scholar
Weiss, C.A. Kirkpatrick, R.J. and Altaner, S.P., 1990 Variations in interlayer cation sites of clay minerals as studied by Cs-133 MAS nuclear magnetic resonance spectroscopy American Mineralogist 75 970982.Google Scholar
White, J.A. and Bird, D.M., 1994 Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total energy calculations Physical Review B—Condensed Matter 50 49544957 10.1103/PhysRevB.50.4954.CrossRefGoogle ScholarPubMed
White, J.L., Bailey, G.W., Brown, C.B. and Ahlrichs, J.L. (1962) Migration of lithium ions into empty octahedral sites in muscovite and montmorillonite. Special Paper—Geological Society of America, 295 pp.Google Scholar
Young, D.A. and Smith, D.E., 2000 Simulations of clay mineral swelling and hydration: dependence upon interlayer ion size and charge Journal of Physical Chemistry B 104 91639170 10.1021/jp000146k.CrossRefGoogle Scholar