Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T00:41:52.980Z Has data issue: false hasContentIssue false

Diffuse Reflectance Spectra of Al Substituted Goethite: A Ligand Field Approach

Published online by Cambridge University Press:  28 February 2024

Andreas C. Scheinost*
Affiliation:
Agronomy Department, Purdue University, West Lafayette, Indiana 47907
Darrell G. Schulze
Affiliation:
Agronomy Department, Purdue University, West Lafayette, Indiana 47907
Udo Schwertmann
Affiliation:
Lehrstuhl Für Bodenkunde, TU München, 85350 Freising, F.R.G.
*
Present address: Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19717-1303
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous investigations of goethite revealed a substantial variation of color and diffuse reflectance spectra (DRS) in the extended visible range (350–2200 nm). To better understand the causes of this variability and to assess the potential of DRS as a mineralogical tool, we investigated the DRS of pure and Al-substituted goethite, α-Fe1−xAlxOOH with x from 0 to 0.33, and mean crystal lengths (MCL) from 170 to 1800 nm. The strongly overlapping ligand field bands were extracted by fitting the single-electron transitions 6A14T1, 6A14T2, 6A1 → (4E; 4A1), and 6A14E(4D) as functions of the ligand field splitting energy, 10 Dq, and the interelectronic repulsion parameters, Racah-B and -C. With x increasing from 0 to 0.33, 6A14T1 decreased from 10,590 to 10,150 cm−1 (944 to 958 nm), and 6A14T2 decreased from 15,310 to 14,880 cm−1 (653 to 672 nm), while 10 Dq increased from 15,770 to 16,220 cm−1. From the change of 10 Dq we calculated a decrease of the Fe-(O,OH) distances from 202.0 to 200.9 pm (−0.5%). This decrease is smaller than the average decrease of all (Al,Fe)-(O,OH) distances (−1.8%) calculated from the change of the unit-cell lengths (UCL). That is, there remains a substantial difference in size between the larger Fe- and the smaller Al-occupied octahedra in the solid solution which may indicate the existence of diaspore clusters within the goethite structure. The increasing strain in the crystal structure due to the size mismatch and limited contractibility of the oxygen cage around Fe may be the primary reason for Al substitution being restricted to x < 0.33. The bands 6A1 → (4E; 4A1) and 6A14E(4D) did not shift, indicating a constant covalency of the Fe-(O,OH) bonds with B = 628 cm−1 and C = 5.5B. Whereas variation of band energies could be explained in terms of the Fe-(O,OH) ligand field, the variation of color and band intensities was mainly determined by crystal size. Although our study confirmed the potential of DRS for mineralogical investigations, there is still a gap between the fundamental theory and the explanation of some spectral features.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Bedidi, A. and Cervelle, B., 1993 Diffusion de la lumière par des particules minérales Cahiers ORSTOM Serie Pedologie 28 714.Google Scholar
Bedidi, A. Cervelle, B. Madeira, J. and Pouget, M., 1992 Moisture effects on visible spectral characteristics of lat-eritic soils Soil Science 153 129141 10.1097/00010694-199202000-00007.CrossRefGoogle Scholar
Bethe, H., 1929 Termaufspaltung in Kristallen Annalen der Physik 3 133206 10.1002/andp.19293950202.CrossRefGoogle Scholar
Bishop, J.L. Murad, E., Dyar, M.D. McCammon, C. and Schaefer, M.W., 1996 Schwertmannite on Mars? Spectroscopic analyses of schwertmannite, its relationship to other ferric minerals, and its possible presence in the surface material on Mars Mineral Spectroscopy: A Tribute to Roger G. Burns, Special Publication: 5 Huston, Texas The Geochemical Society.Google Scholar
Brockes, A., 1964 Der Zusammenhang von Farbstärke und Teichengröße von Buntpigmenten nach der Mie-Theorie Optik 21 550566.Google Scholar
Buckingham, W.F. and Sommer, S.E., 1983 Mineralogical characterization of rock surfaces formed by hydrothermal alteration and weathering—Application to remote sensing Economic Geology 78 664674 10.2113/gsecongeo.78.4.664.CrossRefGoogle Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory. Cambridge Topics in Mineral Physics and Chemistry, 5, Putnis, A. and Lieberman, R.C., eds., Cambridge University Press, 551 pp.CrossRefGoogle Scholar
Carlson, L., 1995 Aluminum substitution in goethite in lake ore Bulletin of the Geological Society of Finland 67 1928 10.17741/bgsf/67.1.002.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Weinheim VCH Verlagsgesellschaft.Google Scholar
Fernandez, R.N. and Schulze, D.G., 1987 Calculation of soil color from reflectance spectra Soil Science Society of America Journal 51 12771282 10.2136/sssaj1987.03615995005100050033x.CrossRefGoogle Scholar
Fitzpatrick, R.W. and Schwertmann, U., 1982 Al-substituted goethite—An indicator of pedogenic and other weathering environments in South Africa Geoderma 27 335347 10.1016/0016-7061(82)90022-2.CrossRefGoogle Scholar
Forsyth, J.B. Hedley, I.G. and Johnson, C.E., 1968 The magnetic structure and hyperfine field of geothite (α-Fe-OOH) Journal of Physical Chemistry C Series 2 1 179188.Google Scholar
Golden, D.C., 1978 Physical and chemical properties of aluminum-substituted goethite. Dissertation Abstract 7820029 .Google Scholar
Hapke, B., 1981 Bidirectional reflectance spectroscopy. 1. Theory Journal of Geophysical Research 86 30393054 10.1029/JB086iB04p03039.CrossRefGoogle Scholar
Hazemann, J.L. Bérar, J.E. and Manceau, A., 1991 Rietveld studies of the aluminium-iron substition in synthetic goethite Materials Science Forum 79–82 821825 10.4028/www.scientific.net/MSF.79-82.821.CrossRefGoogle Scholar
Hill, F.J., 1979 Crystal structure refinement and electron density distribution in diaspore Physics and Chemistry of Minerals 5 179200 10.1007/BF00307552.CrossRefGoogle Scholar
Kosmas, C.S. Curi, N. Bryant, R.B. and Franzmeier, D.P., 1984 Characterization of iron oxide minerals by second-derivative visible spectroscopy Soil Science Society of America Journal 48 401405 10.2136/sssaj1984.03615995004800020036x.CrossRefGoogle Scholar
Kosmas, C.S. Franzmeier, D.P. and Schulze, D.G., 1986 Relationship among derivative spectroscopy, color, crystallite dimensions, and Al substitution of synthetic geothites and hematites Clays and Clay Minerals 34 625634 10.1346/CCMN.1986.0340602.CrossRefGoogle Scholar
Krasovska, O.V. Winkler, B. Krasovskii, E.E. Yaresko, A.N. Antonov, V.N. and Langer, N., 1997 Ab initio calculation of the pleochroism of fayalite American Mineralogist 82 672676 10.2138/am-1997-7-803.CrossRefGoogle Scholar
Lever, A.B.P. (1984) Inorganic Electronic Spectrocopy. Studies in Physical and Theoretical Chemistry, 33. Elsevier Publishing Company, Amsterdam, 830 pp.Google Scholar
Malengreau, N. Muller, J.-P. and Calas, G., 1994 Fe-speciation in kaolins: A diffuse reflectance study Clays and Clay Minerals 42 137147 10.1346/CCMN.1994.0420204.CrossRefGoogle Scholar
Malengreau, N. Bedidi, A. Muller, J.-P. and Herbillon, A.J., 1996 Spectroscopic control of iron oxide dissolution in two ferralitic soils European Journal of Soil Science 47 1320 10.1111/j.1365-2389.1996.tb01367.x.CrossRefGoogle Scholar
Manceau, A. and Combes, J.M., 1988 Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS Physics and Chemistry of Minerals 15 283295 10.1007/BF00307518.CrossRefGoogle Scholar
Marco de Lucas, M.C. Rodriguez, E. Prieto, C. Verdaguer, M. and Güdel, H.U., 1995 Local structure determination of Mn2+ in the ABCl3:Mn2+ chloroperovskites by EXAFS and by optical spectroscopy Journal of Physics and Chemistry of Solids 56 9951001 10.1016/0022-3697(95)00041-0.CrossRefGoogle Scholar
Marusak, L.A. Messier, R. and White, W.B., 1989 Optical absorption spectrum of hematite, α-Fe2O3 near IR to UV Journal of Physics and Chemistry of Solids 41 981984 10.1016/0022-3697(80)90105-5.CrossRefGoogle Scholar
Melville, M.D. and Atkinson, G., 1985 Soil colour: Its measurement and its designation in models of uniform colour space Journal of Soil Science 36 495512 10.1111/j.1365-2389.1985.tb00353.x.CrossRefGoogle Scholar
Mie, G., 1908 Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen Annalen der Physik 25 377445 10.1002/andp.19083300302.CrossRefGoogle Scholar
Morris, R.V. Schulze, D.G. Lauer, H.V. Agresti, D.G. and Shelfer, T.D., 1992 Reflectivity (visible and near IR), Mössbauer, static magnetic, and X-ray diffraction properties of Aluminum-substituted hematites Journal of Geophysical Research 97 1025710266 10.1029/92JE00455.CrossRefGoogle Scholar
Morris, R.V. Golden, D.C. and Bell, JF I, 1997 Low-temperature reflectivity spectra of red hematite and the color of Mars Journal of Geophysical Research 102 91259131 10.1029/96JE03993.CrossRefGoogle Scholar
Mustard, J.F. and Hays, J.E., 1997 Effects of hyperfine particles on relectance spectra from 0.3 to 2.5 u.m Icarus 125 145163 10.1006/icar.1996.5583.CrossRefGoogle Scholar
Orgel, L.E., 1952 The effects of crystal fields on the properties of transition metal ions Journal of the Chemical Society 47564761.CrossRefGoogle Scholar
Orgel, L.E., 1957 Ion compresion and the colour of ruby Nature 179 1348 10.1038/1791348a0.CrossRefGoogle Scholar
Reinen, D. et al. , Hemmerich, P. 1969 et al. , Ligand-field spectroscopy and chemical bonding in Cr3+-containing solids Structure and Bonding 6 New York Springer-Verlag 3051 10.1007/BFb0118853.CrossRefGoogle Scholar
SAS Institute Inc., 1988 SAS/STAT User’s Guide North Carolina Cary.Google Scholar
Sayers, D.E. Bunker, B.A., Koningsberger, D.C. and Prins, R., 1988 Data Analysis X-Ray Absorption—Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Chemical Analysis New York John Wiley & Sons 211253.Google Scholar
Scheinost, A.C. Chavernas, A. Barrón, V. and Torrent, J., 1998 Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils Clays and Clay Minerals 46 528537 10.1346/CCMN.1998.0460506.CrossRefGoogle Scholar
Schugar, H.J. Rossman, G.R. Thibeault, J. and Gray, H.B., 1970 Simultaneous pair electronic excitations in binuclear iron (III) complex Chemical Physics Letters 6 2628 10.1016/0009-2614(70)80066-5.CrossRefGoogle Scholar
Schulze, D.G., 1984 The influence of aluminum on iron oxides. VIII. Unit cell dimensions of Al-substitued geoethites and estimation of Al from them Clays and Clay Minerals 32 3644 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1984 The influence of aluminum on iron oxides: X. Properties of Al-substituted goethites Clay Minerals 19 521529 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., 1987 The influence of aluminum on iron oxides: XIII. Properties of goethites syn-thesised in 0.3 M KOH at 25°C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., Bigham, J.M. and Ciolkosz, E.J., 1991 Relations between iron oxides, soil color and soil formation Soil Color Wisconsin Soil Science Society of America Special Publication 31, Madison 5169.Google Scholar
Schwertmann, U. and Carlson, L., 1994 Aluminum substitution of iron oxides: XVII. Unit cell parameters and aluminum substitution of natural goethites Soil Science Society of America Journal 58 256261 10.2136/sssaj1994.03615995005800010039x.CrossRefGoogle Scholar
Schwertmann, U. Gasser, U. and Sticher, H., 1989 Chromium-for-iron substitution in synthetic goethites Geochim-ica et Cosmochimica Acta 53 12931297 10.1016/0016-7037(89)90063-X.CrossRefGoogle Scholar
Shannon, R.D., 1976 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Sherman, D.M., 1985 Electronic structures of Fe3+ coordination sites in iron oxides: applications to spectra, bonding, and magnetism Physics and Chemistry of Minerals 12 161175 10.1007/BF00308210.CrossRefGoogle Scholar
Sherman, D.M. and Waite, T.D., 1985 Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV American Mineralogist 70 12621269.Google Scholar
Sherman, D.M. Burns, R.G. and Burns, V.M., 1982 Spectral characteristics of the iron oxides with application to the martian bright region mineralogy Journal of Geophysical Research 87 1016910180 10.1029/JB087iB12p10169.CrossRefGoogle Scholar
Singer, R.B., 1982 Spectral evidence for the mineralogy of high-albedo soils and dust on Mars Journal of Geophysical Research 87 1015910168 10.1029/JB087iB12p10159.CrossRefGoogle Scholar
Sunshine, J.M. Pieters, C.M. and Pratt, S.E., 1990 Deconvolution of mineral absorption bands: An improved approach Journal of Geophysical Research 95 69556966 10.1029/JB095iB05p06955.CrossRefGoogle Scholar
Tossell, J.A. and Vaughan, D.J., 1974 The electronic structure of rutile, wustite, and hematite from molecular orbital calculations American Mineralogist 59 319334.Google Scholar
Townsend, T.E., 1987 Discrimination of iron alteration minerals in visible and near-infrared reflectance data Journal of Geophysical Research 92 14411454 10.1029/JB092iB02p01441.CrossRefGoogle Scholar
Wendlandt, W.W. and Hecht, H.G., 1966 Reflectance Spectroscopy New York John Wiley & Sons.Google Scholar
Winter, G., 1979 Anorganische Pigmente: Disperse Festkör-per mit technisch verwertbaren optischen und magnetischen Eigenschaften Fortschritte der Mineralogie 57 172202.Google Scholar
Wolska, E. and Schwertmann, U., 1993 The mechanism of solid solution formation between goethite and diaspore Neues Jahrbuch für Mineralogie Monatshefte 5 213223.Google Scholar
Wyszecki, G. and Stiles, W.S., 1982 Color Science: Concepts and Methods, Quantitative Data and Formulae New York John Wiley and Sons.Google Scholar