Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:02:15.419Z Has data issue: false hasContentIssue false

Effect of Silicate Species on the Transformation of Ferrihydrite into Goethite and Hematite in Alkaline Media

Published online by Cambridge University Press:  02 April 2024

R. M. Cornell
Affiliation:
Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3000 Berne 9, Switzerland
R. Giovanoli
Affiliation:
Laboratory of Electron Microscopy, University of Berne, Freiestrasse 3, CH-3000 Berne 9, Switzerland
P. W. Schindler
Affiliation:
Institute of Inorganic Chemistry, University of Berne, Freiestrasse 3, CH-3000 Berne 9, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transformation of ferrihydrite to goethite and/or hematite in alkaline media is strongly retarded by the presence of silicate species. These species probably stabilize ferrihydrite by adsorbing on the particles of ferrihydrite and linking them into an immobile network.

At concentrations low enough for the transformation to proceed, silicate species promote the formation of hematite and hinder the nucleation of goethite. The presence of silicate species modifies the morphology of both reaction products. Hematite forms ellipsoidal single crystals, commonly displaying outgrowths of goethite. Silicate species in solution appear to enhance the development of the (021) faces of goethite, probably by preferential adsorption on these faces; at high levels of silicate species, goethite crystals adopt a pseudohexagonal habit. This morphology has not been observed previously for goethite.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Anderson, P. R. and Benjamin, M. M., 1985 Effect of silicon on the crystallization and adsorption properties of ferric oxides Environ. Sci. Technol. 19 10481053.CrossRefGoogle ScholarPubMed
Carlson, L. and Schwertmann, U., 1981 Natural ferrihydrites in surface deposits from Finland and their association with silica Geochim. Cosmochim. Acta 45 421429.CrossRefGoogle Scholar
Cornell, R. M., 1985 Effect of simple sugars on the alkaline transformation of ferrihydrite into goethite and hematite Clays & Clay Minerals 33 219227.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1985 Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite Clays & Clay Minerals 33 424432.CrossRefGoogle Scholar
Cornell, R. M. and Giovanoli, R., 1986 Factors that govern the formation of multi-domainic goethites Clays & Clay Minerals 34 557564.CrossRefGoogle Scholar
Cornell, R. M., Mann, S. and Skarnulis, A. J., 1983 A high-resolution electron microscopy examination of domain boundaries in crystals of synthetic goethite J. Chem. Soc. Faraday Trans. 1 79 26792684.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M. and Quirk, J. P., 1974 Crystal morphology and the dissolution of goethite J. Inorg. Nucl. Chem. 36 19371946.CrossRefGoogle Scholar
Cornell, R. M. and Schindler, P. W., 1980 Infrared study of the adsorption of hydroxy-carboxylic acids on α-FeOOH and amorphous Fe(III) hydroxide Colloid Polymer Sci. 258 11711175.CrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U., 1979 Influence of organic anions on the crystallization of ferrihydrite Clays & Clay Minerals 27 402410.CrossRefGoogle Scholar
Feitknecht, W. and Michaelis, W., 1962 Über die Hydrolyse von Eisen(III)-perchlorat-Lösungen Helv. Chim. Acta 26 212224.CrossRefGoogle Scholar
Fischer, W. R. and Schwertmann, U., 1975 The formation of hematite from amorphous iron(III) hydroxide Clays & Clay Minerals 23 3337.CrossRefGoogle Scholar
Giovanoli, R., 1980 Layer structured manganese oxide hydroxides. VI. Recrystallization of synthetic buserite and the influence of amorphous silica and ferric hydroxide on its nucleation Chimia 34 308310.Google Scholar
Goldschmidt, V. M., 1937 The principles of distribution of chemical elements in minerals and rocks J. Chem. Soc 655673.CrossRefGoogle Scholar
Hingston, F. J., Atkinson, R. J., Posner, A. M. and Quirk, J. P., 1967 Specific adsorption of anions Nature 215 14591461.CrossRefGoogle Scholar
Huang, C. P. and Stumm, W., 1973 Specific adsorption of cations on hydrous γ-Al2O3 J. Coll. Interface Sci. 43 409420.CrossRefGoogle Scholar
Karim, Z., 1984 Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica Clays & Clay Minerals 32 181184.CrossRefGoogle Scholar
Lewis, D. G. and Schwertmann, U., 1979 The influence of aluminium on the formation of iron oxides. IV. The influence of [Al], [OH], and temperature Clays & Clay Minerals 27 195200.CrossRefGoogle Scholar
Mann, S., Cornell, R. M. and Schwertmann, U., 1985 The influence of aluminium on iron oxides: XII. High resolution transmission electron microscopic (HRTEM) study of aluminous goethites Clay Miner. 20 255262.CrossRefGoogle Scholar
Ozaki, M., Kratovhil, S. and Matijevic, E., 1984 Formation of monodispersed spindle-type hematite particles J. Colloid Interface Sci. 102 146151.CrossRefGoogle Scholar
Pyman, M. A. F. Bowden, J. W. and Posner, A. M., 1979 The point of zero charge of amorphous coprecipitates of silica with hydrous aluminium or ferric hydroxide Clay Miner. 14 8792.CrossRefGoogle Scholar
Santschi, P. H. and Schindler, P. W., 1974 Complex formation in the ternary systems Ca2+-H4SiO4-H2O and Mg2+-H4SiO4-H2O J. Chem. Soc. Dalton 181184.CrossRefGoogle Scholar
Schindler, P. W., Fürst, B., Dick, R. and Wolf, P., 1976 Ligand properties of surface silanol groups. 1. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+ J. Colloid Interface Sci. 55 469471.CrossRefGoogle Scholar
Schwertmann, U., 1964 Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Z. Pflanzenernähr. Düng Bodenkd. 105 194202.CrossRefGoogle Scholar
Schwertmann, U., 1984 The influence of aluminium on iron oxides: IX. Dissolution of Al-goethite in 6 M HCl Clay Miner. 19 919.CrossRefGoogle Scholar
Schwertmann, U. and Fechter, H., 1982 The point of zero charge of natural and synthetic ferrihydrite and its relation to adsorbed silicate Clay Miner. 17 471476.CrossRefGoogle Scholar
Schwertmann, U. and Fischer, W. R., 1966 Zur Bildung von α-FeOOH und α-Fe2O3 aus amorphem Eisen-(III) hydroxide Z. Anorg. Allg. Chem. 346 137142.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 The effect of pH on the formation of goethite and hematite from ferrihydrite Clays & Clay Minerals 31 277284.CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R. M., 1972 The influence of silicate on the transformation of lepidocrocite to goethite Clays & Clay Minerals 20 159164.CrossRefGoogle Scholar
Schwertmann, U. and Thalman, H., 1976 The influence of Fe(III), [Si], and pH on the formation of lepidocrocite during oxidation of aqueous FeCl2 solutions Clay Miner. 11 189200.CrossRefGoogle Scholar
Sigg, L. and Stumm, W., 1980 The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface Colloids and Surfaces 2 101117.CrossRefGoogle Scholar
Torrent, J. and Guzman, R., 1982 Crystallization of Fe(III)-oxides from ferrihydrite in salt solution: Osmotic and specific ion effects Clay Miner. 17 463469.CrossRefGoogle Scholar
Vogel, A. I., 1961 A Text-book of Quantitative Inorganic Analysis 3rd ed. London Longmans.Google Scholar