Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T22:58:11.778Z Has data issue: false hasContentIssue false

Evolution of Hematite Surface Microtopography Upon Dissolution by Simple Organic Acids

Published online by Cambridge University Press:  28 February 2024

Patricia A. Maurice
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
Michael F. Hochella Jr.
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
George A. Parks
Affiliation:
Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
Garrison Sposito
Affiliation:
Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, California 94720
Udo Schwertmann
Affiliation:
Institute of Soil Science, Technical University of Munich, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface microtopography of hematite over the course of dissolution in oxalic and citric acids was examined by in-situ and ex-situ atomic-force microscopy. In-situ imaging of the basal-plane surface of a centimeter-scale natural hematite sample immersed in 2 mM citric acid demonstrated that the basal-plane surface was relatively unreactive; rather, dissolution occurred along step edges and via etch-pit formation. Ex-situ imaging of synthetic hematite particles following batch dissolution in 1 mM oxalic acid showed similar dissolution features on basal-plane surfaces; in addition, etching along particle edges was apparent. The presence of etch features is consistent with a surface-controlled dissolution reaction. The results are in agreement with previous investigations suggesting that the basal-plane surface is relatively unreactive with respect to ligand exchange. Both in-situ and ex-situ imaging of particle surfaces can provide valuable information on the roles of surface structures and microtopographic features in mineral dissolution.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Barrett, R. C., 1991. Development and applications of atomic force microscopy: Ph.D. dissertation. Stanford University.Google Scholar
Barron, V., Herruzo, M., and Torrent, J. 1988 . Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. of Amer. J. 52: 647651.CrossRefGoogle Scholar
Berner, R. A., and Holdren, G. R. 1977 . Mechanism of feldspar weathering: Some observational evidence. Geology 5: 369372.2.0.CO;2>CrossRefGoogle Scholar
Berner, R. A., 1980. Early Diagenesis. Princeton, NJ: Princeton University Press, 241 pp.Google Scholar
Berner, R. A., and Schott, J. 1982 . Mechanism of pyroxene and amphibole weathering—II. Observations of soil grains. Amer. J. of Sci. 282: 12141231.CrossRefGoogle Scholar
Bigham, J. M., Heckendorn, S. E., Smeck, N. E., and Jaynes, W. F. 1990 . Relative stability of iron oxides in two soils with contrasting colors. Soil Sci. Soc. Amer. J. 55: 14851492.CrossRefGoogle Scholar
Binnig, G., Quate, C. F., and Gerber, C. 1986 . Atomic force microscope. Phys. Rev. Lett. 56: 930933.CrossRefGoogle ScholarPubMed
Blum, A. E., and Eberl, D. D. Determination of clay particle thicknesses and morphology using scanning force microscopy. In Water-Rock Interaction VII. Kharaka, Y. F., and Maest, A. S., 1992 eds. Rotterdam: Balkema, 133140.Google Scholar
Blum, A. E., and Lasaga, A. C. Monte Carlo simulations of surface reaction rate laws. In Aquatic Surface Chemistry. Stumm, W., 1987 ed. New York: John Wiley and Sons, 255292.Google Scholar
Blum, A. E., and Lasaga, A. C. 1991 . The role of surface speciation in the dissolution of albite. Geochim. Cosmochim. Acta 55: 21932201.CrossRefGoogle Scholar
Blum, A. E., Yund, R. A., and Lasaga, A. C. 1990 . The effect of dislocation density on the dissolution rate of quartz. Geochim. Cosmochim. Acta 54: 283298.CrossRefGoogle Scholar
Brantley, S. L., Crane, S. R., Crerar, D. A., Hellmann, R., and Stallard, R. 1986 . Dissolution at dislocation etch pits in quartz. Geochim. Cosmochim. Acta 50: 23492361.CrossRefGoogle Scholar
Casey, W. C., Carr, M. J., and Graham, R. A. 1988 . Crystal defects and the dissolution kinetics of rutile. Geochim. Cosmochim. Acta 52: 15451556.CrossRefGoogle Scholar
Chou, L., and Wollast, R. 1984 . Study of the weathering of albite at room temperature and pressure in a fluidized bed reactor. Geochim. Cosmochim. Acta 48: 22052217.CrossRefGoogle Scholar
Cornell, R. M., and Schindler, P. W. 1987 . Photochemical dissolution of goethite in acid/oxalate solution. Clays & Clay Miner. 35: 347352.CrossRefGoogle Scholar
Dove, P. M., and Hochella, M. F. Jr. 1993 . Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by scanning force microscopy. Geochim. Cosmochim. Acta 57: 705714.CrossRefGoogle Scholar
Eggleston, C. M., Hochella, M. F., and Parks, G. A. 1989 . Sample preparation and aging effects on the dissolution rate and surface composition of diopside. Geochim. Cosmochim. Acta 54: 797803.CrossRefGoogle Scholar
Eggleston, C. M., and Hochella, M. F. Jr. 1992 . The structure of the hematite {001} surfaces by scanning tunneling microscopy: Image interpretation, surface relaxation, and step structure. Amer. Miner. 77: 911922.Google Scholar
Fisher, W. R., and Schwertmann, U. 1975 . The formation of hematite from amorphous iron(III) hydroxide. Clays & Clay Miner. 23: 3337.CrossRefGoogle Scholar
Fox, T. R., and Comerford, N. B. 1990 . Low-molecular-weight organic acids in selected forest soils of the south-eastern USA. Soil Sci. Soc. Amer. J. 54: 11391144.CrossRefGoogle Scholar
Goldberg, S., and Sposito, G. 1985 . On the mechanism of phosphate adsorption by hydroxylated mineral surfaces: A review. Commun. Soil Science Plant Anal. 16: 801821.CrossRefGoogle Scholar
Gratz, A. J., Hillner, P. E., and Hansma, P. K. 1993 . Step dynamics and spiral growth on calcite. Geochim. Cosmochim. Acta 57: 491495.CrossRefGoogle Scholar
Hartman, H., Sposito, G., Yang, A., Manne, S., Gould, S. A. C., and Hansma, P. K. 1990 . Molecular-scale imaging of clay mineral surfaces with the atomic force microscope. Clays & Clay Miner. 38: 337342.CrossRefGoogle Scholar
Helgeson, H. C., Murphy, W. M., and Aagaard, P. 1984 . Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim. Cosmochim. Acta 48: 24052432.CrossRefGoogle Scholar
Hillner, P. E., Gratz, A. J., Manne, S., and Hansma, P. K. 1992a . Atomic-scale imaging of calcite growth and dissolution in real-time. Geology 20: 359362.2.3.CO;2>CrossRefGoogle Scholar
Hillner, P. E., Manne, S., Gratz, A. J., and Hansma, P. K. 1992b . AFM images of dissolution and growth on a calcite crystal. Ultramicroscopy 42–44: 13871393.CrossRefGoogle Scholar
Hochella, M. F. Jr. . Atomic structure, microtopography, composition, and reactivity of mineral surfaces. In Mineral-Water Interface Geochemistry. Hochella, M. F. Jr. and White, A. F., 1990 eds. Mineralogical Society of America, 87132.CrossRefGoogle Scholar
Hochella, M. F. Jr., Eggleston, C. M., Elings, V. B., and Thompson, M. S. 1990 . Atomic structure and morphology of the albite (010) surface. An atomic-force microscope and electron diffraction study. Amer. Miner. 75: 723730.Google Scholar
Holdren, G. R., and Speyer, P. M. 1985 . pH dependent change in the rates and stoichiometry of dissolution of an alkali feldspar at room temperature. Amer. J. Sci. 285: 9941026.CrossRefGoogle Scholar
Johnsson, P. A., Eggleston, C. M., and Hochella, M. F. Jr. 1991 . Imaging molecular-scale structure and microtopography of hematite with the atomic force microscope. Amer. Miner. 76: 14421445.Google Scholar
Johnsson, P. A., Hochella, M. F. Jr., Parks, G. A., Blum, A. E., and Sposito, G. Direct observation of muscovite basal-plane dissolution and secondary phase formation: An XPS, LEED, and SFM study. In Water-Rock Interaction VII. Kharaka, Y. K., and Maest, A. S., 1992 eds. Rotterdam: A. A. Balkema, 159162.Google Scholar
Kallay, N., and Matijević, E. 1985 . Adsorption at solid/solution interfaces. 1. Interpretation of surface complexation of oxalic and citric acids with hematite. Langmuir 1: 195201.CrossRefGoogle Scholar
Lad, R. J., and Henrich, V. E. 1989 . Photoemission study of the valence-band electronic structure in FexO, Fe3O4, and α-Fe2O3 single crystals. Phys. Rev. B39: 1347813485.CrossRefGoogle Scholar
Lasaga, A. C., and Blum, A. E. 1986 . Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50: 23632379.CrossRefGoogle Scholar
Lindgreen, H., Garnaes, J., Hansen, P. L., Besenbach, F., Laegsgaard, E., Stensgaard, I., Gould, S. A., and Hansma, P. K. 1991 . Ultrafine particles of North Sea illite/smectite clay minerals investigated by STM and AFM. Amer. Miner. 76: 12181222.Google Scholar
MacInnis, I. N., and Brantley, S. L. 1992 . The role of dislocations and surface morphology in calcite dissolution. Geochim. Cosmochim. Acta 56: 11131126.CrossRefGoogle Scholar
Maurice-Johnsson, P. A., 1993. Hematite dissolution in natural organic acids: Ph.D. dissertation. Stanford University.Google Scholar
Miller, W. P., Zelazny, L. W., and Martens, D. C. 1986 . Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma 37: 113.CrossRefGoogle Scholar
Ohnesorge, F., and Binnig, G. 1993 . True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260: 14511456.CrossRefGoogle ScholarPubMed
Parfitt, R. L., Atkinson, R. J., and Smart, R. St. C. 1975 . The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. of Amer. Proc. 39: 837841.CrossRefGoogle Scholar
Parks, G. A., and De Bruyn, P. L. 1962 . The zero point of charge of oxides. Jour. Phys. Chem. 66: 967973.CrossRefGoogle Scholar
Parks, G. A., 1990. Surface energy and adsorption at mineral/water interfaces: An introduction. In Mineral-Water Interface Geochemistry. Hochella, M. F. Jr. and White, A. E., eds. Mineralogical Society of America, 133175.CrossRefGoogle Scholar
Petrovich, R., 1981. Kinetics of dissolution of mechanically comminuted rock-forming oxides and silicates—I. Deformation and dissolution of oxides and silicates in the laboratory and at the Earth's surface. Geochim. Cosmochim. Acta 45: 16751686.CrossRefGoogle Scholar
Rimstidt, J. D., and Dove, P. M. 1986 . Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis. Geochim. Cosmochim. Acta 50: 25092516.CrossRefGoogle Scholar
Rude, P. D., and Aller, R. C. 1989 . Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediments. Jour. Sed. Pet. 59: 704716.Google Scholar
Schwertmann, U., and Cornell, R. M. 1991 . Iron Oxides in the Laboratory. New York: VCH. 236 pp.Google Scholar
Schwertmann, U., Fischer, W. R., and Papendorf, H. 1968 . The influence of organic compounds on the formation of iron oxides. Trans. 9th Int. Congr. Soil Sci. Adelaide 1: 645655.Google Scholar
Stumm, W., 1992. Chemistry of the Solid-Water Interface. New York: John Wiley & Sons, Inc. 428 pp.Google Scholar
Stumm, W., Furrer, G., Wieland, E., and Zinder, B. The effects of complex-forming ligands on the dissolution of oxides and aluminosilicates. In The Chemistry of Weathering. Drever, J. I., 1985 ed. Dordrecht: D. Reidel Publishing Co, 5574.CrossRefGoogle Scholar
Stumm, W., and Wieland, E. Dissolution of oxide and silicate minerals: Rates depend on surface speciation. In Aquatic Chemical Kinetics. Stumm, W., 1990 ed. New York: John Wiley & Sons, 367400.Google Scholar
Sulzberger, B., Suter, D., Siffert, C., Banwart, S., and Stumm, W. 1989 . Dissolution of Fe(III)(hydr)oxides in natural waters: Laboratory assessment on the kinetics controlled by surface coordination. Marine Chem. 28: 127144.CrossRefGoogle Scholar
Sunagawa, I., 1962. Mechanism of growth of hematite. Amer. Miner. 47: 11391155.Google Scholar
Sunagawa, I., 1987. Surface microtopography of crystal faces. In Morphology of Crystals. Sunagawa, I., ed. Tokyo: Terra Scientific Publishing Co., 321365.Google Scholar
Suter, D., Siffert, C., Sulzberger, B., and Stumm, W. 1988 . Catalytic dissolution of iron (III) (hydr)oxides by oxalic acid in the presence of Fe(II). Naturwissenchaften 75: 571573.CrossRefGoogle Scholar
Waite, T. D., and Morel, F. M. M. 1984 . Photoreductive dissolution of colloidal iron oxide: Effect of citrate. J. Colloid Interface Sci. 102: 121137.CrossRefGoogle Scholar
Wehrli, B., 1989. Monte Carlo simulations of surface morphologies during mineral dissolution. J. Colloid Interface Sci. 132: 230242.CrossRefGoogle Scholar
Zhang, Y., Kallay, N., and Matijević, E. 1985 . Interactions of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems. Langmuir 1: 201206.CrossRefGoogle Scholar
Zhong, Q., Inniss, D., Kjoller, K., and Elings, V. B. 1993 . Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290: L688–L692.Google Scholar