Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T19:11:33.106Z Has data issue: false hasContentIssue false

Exchange and Spectroscopy of Cationic Rhodium Complexes on Hectorite

Published online by Cambridge University Press:  02 April 2024

Robert A. Schoonheydt
Affiliation:
Centram voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, de Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Jozefien Pelgrims
Affiliation:
Centram voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, de Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Paul Hendrickx
Affiliation:
Centram voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, de Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Johan Luts
Affiliation:
Centram voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, de Croylaan 42, B-3030 Leuven (Heverlee), Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The exchange of Rh(NBD)(Pϕ3)2+, Rh(NBD)(PMe2ϕ)3+, Rh(COD)(Pϕ3)2+, and Rh(PMe2ϕ)4+ on hectorite was studied in methanol/dichloromethane, acetone, dimethylformamide, and acetonitrile. At low initial Rh+ concentration and short contact times, ion exchange was the predominant process, and its selectivity and maximum capacity were solvent-dependent. High initial Rh+ concentrations, long contact times, and the most polar solvents favored intersalation and salt precipitation. In all experiments monolayers of complex formed in the interlamellar space and were very tightly held. The complexes retained their integrity on the surface even after removal of all solvent molecules.

Резюме

Резюме

Исследовался обмен Rh(NBD)(Pϕ3)2+, Rh(NBD)(PMe2ϕ)3+, Rh(COD)(Pϕ3)2+, и Rh(PMe2ϕ)4+ на гекторите в присутствии метанола/дихлорметана, ацетона, диметилформамида и ацетонитрила. При низких начальных концентрациях Rh+ и небольших временах контакта, ионообмен являлся преобладающим процессом, а его селективность и максимальная способность обмена зависили от типа растворителя. Высокие начальные концентрации Rh+, большие времена контакта и наиболее полярные растворители способствовали пересаливанию и осаждению соли. Во всех экспериментах в межслойной области образовывались монослои комплекса, которые держались очень крепко. Эти комплексы сохраняли свою целостность на поверхности даже после удаления всех молекул растворителя. [E.G.]

Resümee

Resümee

Der Austausch von Rh(NBD)(Pϕ3)2+, Rh(NBD)(PMe2ϕ)3+, Rh(COD)(Pϕ3)2+, und Rh(PMe2ϕ)4+ an Hektorit wurde in Methanol/Dichloromethan, Aceton, Dimethylformamid, und Acetonitril untersucht. Bei niedriger ursprünglicher Rh+-Konzentration und kurzen Reaktionszeiten fand vor allem Ionenaustausch statt. Die Selektivität und die maximale Kapazität war Lösungsmittelabhängig. Hohe ursprüngliche Rh+-Konzentrationen, lange Reaktionszeiten und die am stärksten polaren Lösungsmittel bewirkten eine überwiegende Versalzung zwischen den Schichten sowie Salzausfällung. In allen Experimenten bildeten sich Einerschichten von Komplexen in den interlamellaren Räumen, die sehr fest gehalten wurden. Die Komplexe blieben auf der Oberfläche unversehrt, selbst dann, wenn alle Lösungsmittelmoleküle entfernt waren. [U.W.]

Résumé

Résumé

L’échange de [Rh(NBD)(Pϕ3)2]+, [Rh(NBD)(PMe2ϕ)3]+, [Rh(COD)(Pϕ3)2]+ et de [Rh(PMe2ϕ(4]+ sur hectorite a été étudié dans méthanol/dichlorométhane, acétone, diméthylformamide, et acétonitrile. A condition que la concentration initiale de Rh+ est petite et que le temps d’échange et court, l’échange ionique est la réaction majeure. La sélectivité d’échange et la capacité maximale dépendent du solvent. Des grandes concentrations initiales en Rh+, des temps d’échanges longs et les plus polairs solvants favorisent intercalation et précipitation du sel. Dans toutes les expériences une monocouche est formeé dans l'espace interfoliaire. Les complexes retiennent leure identité sur la surface, même après évacuation du solvent.

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Abel, E. W., Bennett, M. A. and Wilkinson, G., 1959 Nor-bornadiene-metal complexes and some related compounds J. Chem. Soc 31783182.CrossRefGoogle Scholar
Berkheiser, V. E. and Mortland, M. M., 1977 Hectorite complexes with Cu(II) and Fe(II)-1,10 phenanthroline chelates Clays & Clay Minerals 25 105112.CrossRefGoogle Scholar
Chatt, J. and Venanzi, L. M., 1957 Olefin coordination compounds. Part VI. Diene complexes of rhodium(I) J. Chem. Soc 47354741.CrossRefGoogle Scholar
Geoffroy, G. L., Isti, H., Litrenti, J. and Mason, W. R., 1977 Metal to ligand charge-transfer spectra of some square-planar complexes of rhodium(I) and iridium(I) Inorg. Chem. 16 19501955.CrossRefGoogle Scholar
Hassain, S. F., Nicholas, K. M., Teas, C. L. and Davis, R. E., 1981 Carbon dioxide activation, formation of trans-(Ph3P)2Rh(CO)(OCO2H) in the reaction CO2 with HRh(CO)(PRh3)3-CO and the determination of its structure by X-ray crystallography J. Chem. Soc. Chem. Comm. 268269.CrossRefGoogle Scholar
Mazzei, M., Marconi, W. and Riocci, M., 1980 Asymmetric hydrogenation of substituted acrylic acids by Rh'aminephosphine chiral complex supported on mineral clays J. Molecular Catal. 9 381387.CrossRefGoogle Scholar
Muir, K. W. and Ibers, J. A., 1970 The crystal structure of solvated hydridochloro(trichlorosilyl)bis(triphenylai]phosphine)rhodium, RhHCl(SiCl3)(P(C6H5)3)2 xSiHCl3 Inorg. Chem. 9 440447.CrossRefGoogle Scholar
Pinnavaia, T. J. and Welty, Ph K, 1975 Catalytic hydrogenation of l-hexene by rhodium complexes in the inter-crystal space of a swelling layer lattice silicate J. Amer. Chem. Soc. 97 38193820.CrossRefGoogle Scholar
Pinnavaia, T. J., Welty, Ph K, Hoffman, J. F. and Bailey, S. W., 1975 Catalytic hydrogenation of unsaturated hydrocarbons by cationic rhodium complexes and rhodium metal intercalated in smectite Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing Ltd. 373381.Google Scholar
Pinnavaia, T. J., Raythatha, R., Lee, J G-S, Hallaran, L. J. and Hoffman, J. F., 1979 Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogenation catalysts J. Amer. Chem. Soc. 101 68916897.CrossRefGoogle Scholar
Quayle, W. H. and Pinnavaia, T. J., 1979 Utilization of a cationic ligand for the intercalation of catalytically active rhodium complexes in swelling, layer-lattice silicates Inorg. Chem. 18 28402847.CrossRefGoogle Scholar
Raythatha, R. and Pinnavaia, T. J., 1981 Hydrogenation of 1,3-butadienes with a rhodium complex-layered silicate intercalation catalyst J. Organometallic Chem. 218 115122.CrossRefGoogle Scholar
Schoonheydt, R. A., Pelgrims, J., Heroes, Y. and Uytterhoeven, J. B., 1978 Characterization of tris(2,2'-bipyridyl)ruthenium(II) on hectorite Clay Miner. 13 435438.CrossRefGoogle Scholar
Schrock, R. R. and Osborn, J. A., 1971 Preparation and properties of some cationic complexes of rhodium(I) and rhodium(III) J. Amer. Chem. Soc. 93 23972407.Google Scholar
Traynor, M. F., Mortland, M. M. and Pinnavaia, T. J., 1978 Ion-exchange and intersalation reactions of hectorite with tris-bipyridyl metal complexes Clays & Clay Minerals 26 318326.CrossRefGoogle Scholar