Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T04:31:37.624Z Has data issue: false hasContentIssue false

Extended Version of Gouy-Chapman Electrostatic Theory as Applied to the Exchange Behavior of Clay in Natural Waters

Published online by Cambridge University Press:  02 April 2024

C. Neal
Affiliation:
Institute of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, United Kingdom
D. M. Cooper
Affiliation:
Institute of Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A model based on Gouy-Chapman theory, describing the ion exchange behavior of clays in mixed electrolyte solutions is presented. Computed ionic distributions, taking into account variations in relative permittivity, ion activity, and closeness of approach of ions to clay surfaces, are compared with experimental data for smectite and kaolinite in contact with river and saline waters. To obtain reasonable agreement between theoretical prediction and observation the most important extension of Gouy-Chapman theory involves the introduction of a closeness of approach term. Furthermore, the aggregated nature of smectites plays an important part in controlling its exchange properties, whereas a fixed-charge model provides a poor description for the ion exchange properties of kaolinite.

Резюме

Резюме

На основе теории Гуя-Чапмана представлена модель, описывающая ионообменное поведение глин в растворах смешанных электролитов. Принимая во внимание изменения диэлектрической проницаемости, активности ионов и близость доступа ионов к глинистым поверхностям, были рассчитаны ионовые распределения, которые сравнивались с экспериментальными данными для смектита и каолинита, находившимися в контакте с речной и соленой водой. Наиболее значительное расширение теории Гуя-Чапмана включает в себя введение члена "близость доступа," чтобы получить достаточное согласие между теоретическими предсказаниями и наблюдениями. Кроме того, сложная натура смектитов играет значительную роль в контролировании свойств обмена, тогда как модель постоянного заряда неполностью описывает свойства обмена ионов для каолинита. [E.G.]

Resümee

Resümee

Es wird ein Modell vorgestellt, das auf der Gouy-Chapman Theorie beruht, mit dem das Ionenaustauschverhalten von Tonen in gemischten Elektrolytlösungen beschrieben wird. Mittels Computerberechnete Ionenverteilungen, die Variationen der relativen Durlässigkeit, der Ionenaktivität und der Annäherung der Ionen an die Tonoberflächen berücksichtigen, wurden mit experimentellen Daten für Smektit und Kaolinit, die in Kontakt mit Flußwässern und salinen Wässern waren, verglichen. Um eine brauchbare Übereinstimmung zwischen der theoretischen Vorhersage und den Beobachtungen zu erzielen, war die Einführung eines Annäherungsterms die wichtigste Erweiterung der Gouy-Chapman Theorie. Darüberhinaus spielt das Aggregat-förmige Auftreten der Smektite eine wichtige Rolle, indem es die Austauscheigenschaften beeinflußt, während ein Modell mit definierter Ladung nur eine ungenügende Beschreibung für die Ionenaustauscheigenschaften des Kaolinits liefert. [U.W.]

Résumé

Résumé

On présente un modèle, basé sur la théorie Gouy-Chapman, décrivant le comportement d’échange d'ions d'argiles dans des solutions d’électrolytes mélangés. Des distributions ioniques computées, qui tiennent compte des variations de permittivité relative, d'activité ionique et de la proximité d'approche des ions des surfaces argileuses, sont comparées avec des données expérimentales pour la smectite et la kaolinite en contact avec des eaux fraîches et salées. Pour obtenir un accord raisonnable entre la prédiction théorique et l'observation, l'extension la plus importante de la théorie de Gouy-Chapman implique le terme de proximité d'approche. De plus, la nature aggregate des smectites joue un role important dans le contrôle de ses propriétés d’échange, tandis qu'un modèle à charge fixe fourni une description pauvre pour les propriétés d’échange d'ions de la kaolinite. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Bache, B. W., 1976 The measurement of cation exchange capacity of soils Jour. Sci. Fd. Agric. 27 273280.CrossRefGoogle Scholar
Berner, R. A., 1971 Principles of Chemical Sedimentology New York McGraw-Hill.Google Scholar
Bolt, G. H., 1955 Ion adsorption by clays. Soil Sci. 79 267276.CrossRefGoogle Scholar
Bolt, G. H., 1955 Analysis of the validity of the Gouy-Chapman theory of the electric double layer Jour. Colloid Sci. 10 206218.CrossRefGoogle Scholar
Bolt, G. H., 1967 Cation-exchange equations used in soil science—a review Neth. Jour. Agric. Sci. 15 81103.Google Scholar
Bolt, G. H. and Bolt, G. H., 1979 The ionic distribution of the diffuse double layer Soil Chemistry B. Physico-Chemical Models Amsterdam Elsevier 176.Google Scholar
Bolt, G. H. and de Haan, F. A. M., 1965 Interactions between anions and soil constituents IAEA, Vienna, Tech. Rep. Ser. 44 94110.Google Scholar
Bolt, G. H., de Haan, F. A. M. and Bolt, G. H., 1979 Anion exclusion in soil Soil Chemistry B. Physico-Chemical Models Amsterdam Elsevier 233257.CrossRefGoogle Scholar
Bolt, G. H., Shainberg, I. and Kemper, W. D., 1967 Discussion of the paper by I. Shainberg and W. D. Kemper entitled ‘Ion exchange equilibria on montmorillonite’ Soil Sci. 104 444453.Google Scholar
Bolt, G. H. and Warkentin, B. P., 1958 The negative adsorption of anions by clay suspensions Kolloid Z. 156 4146.CrossRefGoogle Scholar
Bruggenwert, M. G. M., Kamphorst, A. and Bolt, G. H., 1979 Survey of experimental information on cation exchange in soil systems Soil Chemistry B. Physico-Chemical models Amsterdam Elsevier 141203.CrossRefGoogle Scholar
Davis, G. A. and Worrall, W. E., 1971 The adsorption of water by clays Trans. Brit. Ceram. Soc. 70 7175.Google Scholar
Dolcater, D. L., Lotse, E. G., Syers, J. K. and Jackson, M. L., 1968 Cation exchange selectivity of some clay-sized minerals and soil materials Soil Sci. Soc. Amer. Proc. 32 795798.CrossRefGoogle Scholar
Edwards, D. G. and Quirk, J. P., 1962 Repulsion of chloride by montmorillonite J. Colloid Sci. 17 872882.CrossRefGoogle Scholar
Grahame, D. C., 1947 The electrical double layer and the theory of electrocapillarity Chem. Rev. 441502.CrossRefGoogle Scholar
Grahame, D. C., 1952 Diffuse double layer theory for electrolytes of unsym metrical valency type J. Chemical Physics 21 10541060.CrossRefGoogle Scholar
Grim, R. E., 1968 Clay Mineralogy New York McGraw-Hill.Google Scholar
Guggenheim, E. A., 1967 Thermodynamics Amsterdam North-Holland Publishing Co..Google Scholar
Helmy, A. K., Natale, I. M. and Mandolesi, M. E., 1980 Negative adsorption in clay water systems Clays & Clay Minerals 28 262266.CrossRefGoogle Scholar
Heald, W. R., Frere, M. H. and De Wit, S. T., 1964 Ion adsorption on charged surfaces Soil Sci. Soc. Amer. Proc. 28 622627.CrossRefGoogle Scholar
Hofmann, U., Weiss, A., Koch, G., Mehler, A. and Scholz, A., 1958 Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and of kaolinite Clays and Clay Minerals, Proc. 4th Natl. Conf., University Park, Pennsylvania, 1956 456 273287.Google Scholar
Joshi, K. M. and Parsons, R., 1961 The diffuse double layer in mixed electrolytes Electrochimica Acta 4 129140.CrossRefGoogle Scholar
Lyman, J. and Fleming, R. H., 1940 Composition of sea-water J. Marine Res. 3 134146.Google Scholar
McConnell, B. L., Williams, K. C., Daniel, J. L., Stanton, J. H., Irby, B. M., Dugger, D. L. and Maatman, R. W., 1964 A geometric effect at the solution surface interface and its relationship to ion solvation. Jour. Physical Chem. 68 29412946.CrossRefGoogle Scholar
Moore, W. J., 1968 Physical Chemistry London Longmans.Google Scholar
Neal, S., 1977 The determination of adsorbed Na, K, Mg, and Ca on sediments containing CaCO3 and MgCO3 Clays & Clay Minerals 25 253258.CrossRefGoogle Scholar
Norrish, K., 1954 The swelling of montmorillonite Discuss. Faraday Soc. 18 120134.CrossRefGoogle Scholar
Oldham, K. B., 1975 Composition of the diffuse double layer in sea water or other media containing ionic species of +2, +1, -1 and -2 charge types J. Electroanalytical Chem. 63 139156.CrossRefGoogle Scholar
van Olphen, H., 1977 Clay Colloid Chemistry New York Wiley.Google Scholar
Pytkowicz, R. M., 1979 Activity Coefficients in Natural Waters Boca Raton, Florida CRC Press.Google Scholar
Pytkowicz, R. M., 1979 Activity Coefficients in Natural Waters Boca Raton, Florida CRC Press.Google Scholar
Ravina, I. and Gur, Y., 1978 Application of the electrical double layer theory to predict ion adsorption in mixed ionic systems Soil Sci. 125 204209.CrossRefGoogle Scholar
Sayles, F. L. and Manglesdorf, P C Jr, 1977 The equilibrium of clay minerals with sea water: exchange reactions Geochim. Cosmochim. Acta 41 951960.CrossRefGoogle Scholar
Sayles, F. L. and Manglesdorf, P C Jr, 1979 Cation exchange characteristics of Amazon River suspended sediment and its reaction in sea water Geochim. Cosmochim. Acta 43 767779.CrossRefGoogle Scholar
Schofield, R. K., 1949 Calculation of surface areas of clays from measurements of negative adsorption Trans. Brit. Ceram. Soc. 48 207213.Google Scholar
Slavin, W., 1968 Atomic Absorption Spectroscopy New York Wiley-Interscience.Google Scholar
Sparnaay, M. J., 1958 Corrections of the theory of the flat diffuse double layer Rec. Trav. Chim. 11 872888.CrossRefGoogle Scholar
Sposito, G., 1981 The Thermodyanics of Soil Solutions Oxford Clarendon Press 155186.Google Scholar
Sposito, G., 1981 Cation exchange in soils: an historical and theoretical perspective Chemistry in the Soil Environment 40 1331.Google Scholar
Steger, H. F., 1973 On the mechanism of the adsorption of trace copper by bentonite Clays & Clay Minerals 21 429436.CrossRefGoogle Scholar
Thomas, A. G., Truesdale, V. W., Neal, S., Parker, R. and Kinsman, D. J. J., 1982 The heterogeneous distribution of anions and water around a clay surface with special reference to estuarine systems Transfer Processes in Cohesive Sediments London Plenum Press.Google Scholar
Thomas, H. C., 1965 Toward a connection between ionic equilibrium and ionic migration in clay gels Int. Atomic Energy Agency, Tech. Rep. 48 419.Google Scholar
Truesdale, V. W., Neal, C., Thomas, A. G., Parker, R. and Kingsman, D. J. J., 1982 A rationalisation of several approaches to clay/electrolyte studies Transfer Processes in Cohesive Sediments London Plenum Press.Google Scholar
Westall, J. and Hohl, H., 1980 A comparison of electrostatic models for oxide/solution interface Adv. Coll. Int. Sci. 12 265294.CrossRefGoogle Scholar
Whitfield, M. and Pytkowicz, R. M., 1979 Activity coefficients in natural waters Activity Coefficients in Electrolyte Solutions Florida CRC Press, Boca Raton 153299.Google Scholar
Wiklander, L. and Bear, F., 1964 Cation and anion exchange phenomena Chemistry of the Soil New York Van Nostrand Reinhold Co. 163205.Google Scholar
Zall, D. M., Fisher, D. and Garner, M. Q., 1956 Photometric determinations of chlorides in water Anal. Chem. 28 16651668.CrossRefGoogle Scholar
Zaytseva, E. D. and Brujewicz, S. V., 1966 Exchange capacity and cations of sediments of the Pacific Ocean Khimiya Tikhogo Okeana, (Chemistry of the Pacific Ocean) Nauka Izd. 273290.Google Scholar