Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T12:43:18.533Z Has data issue: false hasContentIssue false

Fe-Rich Clays in a Weathering Profile Developed from Serpentinite

Published online by Cambridge University Press:  01 January 2024

J. Caillaud*
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 av. du recteur Pineau, 86022 Poitiers cedex, France
D. Proust
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 av. du recteur Pineau, 86022 Poitiers cedex, France
D. Righi
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 av. du recteur Pineau, 86022 Poitiers cedex, France
F. Martin
Affiliation:
UMR 6532 CNRS, HydrASA, Facultés des Sciences, 123, av. A. Thomas, 87060 Limoges cedex, France
*
*E-mail address of corresponding author: jacinthe.caillaud@hydrasa.univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bulk mineralogical and chemical properties of a weathering profile derived from serpentinite were studied using classical pedological methods (Munsell soil colors, particle-size distribution, density, cation exchange capacity, exchangeable bases, among others) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) results. Bulk clay fractions were characterized using X-ray diffraction, thermal analysis, electron microprobe, Mössbauer and infrared spectroscopies. Bulk geochemical mass-balance calculated from ICP-AES results shows leaching of both Mg and Si which reflects the early weathering of serpentine minerals. As a consequence, newly formed clay minerals are enriched with the least mobile elements, i.e. Fe and Al, producing dioctahedral smectites. These dioctahedral smectites are complex, heterogeneous and consist mainly of two populations. One population is an Fe-rich montmorillonite with little or no tetrahedral charge and Fe3+ as the dominant octahedral cation whereas the second population exhibits tetrahedral charge. Both populations occur as interstratified layers in the lower horizon of the weathering profile but show increasing segregation into well-defined end-members towards the surface horizons. Considering total Al and Fe contents, these clays differentiate into two chemical composition domains, Fe-rich clays in the lower profile and Al-rich clays towards the surface horizons.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Alexander, E.B., (1988) Morphology, fertility and classification of productive soils on serpentinised peridotite in California, U.S.A Geoderma 41 337351 10.1016/0016-7061(88)90069-9.CrossRefGoogle Scholar
Alexander, E.B. Adamson, C. Zinke, P.J. and Graham, R.C., (1989) Soils and conifer productivity on serpentinized peridotite of the Trinity ophiolite, California Soil Science 148 412423 10.1097/00010694-198912000-00003.CrossRefGoogle Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Berre, A. Ducloux, J. and Dupuis, J., (1974) Pédogénèse sur roches ultrabasiques en climat tempéré humide: les sols sur serpentinites du Limousin occidental Extrait de Science du sol — Bulletin de l’A.F.E.S 3 135146.Google Scholar
Besset, F. (1978) Localisations et répartitions successives du nickel au cours de l’altération latéritiques des péridotites de Nouvelle-Calédonie. PhD thesis, France, 129 pp.Google Scholar
Bonifacio, E. Zanini, E. Boero, V. and Franchini-Angela, M., (1996) Pedogenesis in a soil catena on serpentinite in north-western Italy Geoderma 75 3351 10.1016/S0016-7061(96)00076-6.CrossRefGoogle Scholar
Bulmer, C.E. and Lavkulich, L.M., (1994) Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia Canadian Journal of Soil Science 74 165177 10.4141/cjss94-024.CrossRefGoogle Scholar
Cleaves, E.T. Fisher, D.W. and Bricker, O.P., (1974) Chemical weathering of serpentinite in the Eastern Piedmont of Maryland Geological Society of America Bulletin 85 437444 10.1130/0016-7606(1974)85<437:CWOSIT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Coombe, D. E. Frost, L. C. Bas, M. Le and Watters, W., (1956) The Nature and Origin of the Soils over the Cornish Serpentine The Journal of Ecology 44 2 605 10.2307/2256839.CrossRefGoogle Scholar
Delvaux, B. Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed layer kaolinite/smectite Clay Minerals 24 617630 10.1180/claymin.1989.024.4.05.CrossRefGoogle Scholar
Ducloux, J. Meunier, A. and Velde, B., (1976) Smectite, chlorite, and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body. Massif Central, France Clay Minerals 11 121135 10.1180/claymin.1976.011.2.04.CrossRefGoogle Scholar
Farmer, V.C. and Farmer, V.C., (1974) The Layer Silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.CrossRefGoogle Scholar
Gaudin, A., (2002) Cristallochimie des smectites du gisement latéritique nickélifère de Murrin Murrin (Ouest Australie) Aix en Provence, France Université d’Aix-Marseille III PhD thesis.Google Scholar
Golighty, J.P., (1981) Nickeliferous laterite deposits Economic Geology 75 710735.Google Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Graham, R.C. Diallo, M.M. and Lund, L.J., (1990) Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California Soil Science Society of America Journal 54 16821690 10.2136/sssaj1990.03615995005400060030x.CrossRefGoogle Scholar
Gresens, R.L., (1967) Composition-volume relationships of metasomatism Chemical Geology 2 4765 10.1016/0009-2541(67)90004-6.CrossRefGoogle Scholar
Harward, M.E. Castea, D.D. and Sayegh, A.H., (1969) Properties of vermiculites and smectites: expansion and collapse Clays and Clay Minerals 11 437447 10.1346/CCMN.1969.0160605.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., (1950) Verlust der Austauschfähigkeit von Lithiuminonen an Bentonit durch Erhitzung Zeitschrift für anorganische und allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Isok, J.D. and Harward, M.E., (1982) Influence of soil moisture on smectite formation in soils derived from serpentinite Soil Science Society of America Journal 46 11061108 10.2136/sssaj1982.03615995004600050046x.CrossRefGoogle Scholar
Joussein, E. Petit, S. and Decarreau, A., (2001) Une nouvelle méthode de dosage des minéraux argileux en mélange par spectroscopie IR Comptes Rendus de l’Académie des Sciences 332 8389.Google Scholar
Lanson, B., (1993) DECOMPXR, X-ray Decomposition Program France ERM, Poitiers.Google Scholar
Mackenzie, R.C. and Mackenzie, R.C., (1970) Simple phyllosilicates based on gibbsite- and brucite-like sheets Differential Thermal Analysis I London Mineralogical Society 498534.Google Scholar
Madejová, J. Kraus, I. and Komadel, P., (1995) Fourier transform infrared spectroscopic characterization of dioctahedral smectites and illites from the main Slovak deposits Geologica Carpathica — Series Clays 1 2332.Google Scholar
Madejová, J. Komadel, P. and Čičel, B., (1994) Infrared study of octahedral site populations in smectites Clay Minerals 29 319326 10.1180/claymin.1994.029.3.03.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate. 7thnational Conference of Clay Minerals, 317327.Google Scholar
N’Kanika, W. and Rupiya, P., (1979) Etude géochimique des métaux dans les sols développés sur le massif de serpentines de La Roche-l’Abeille (Haute Vienne, France) France Université d’Orléans PhD thesis.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Pelletier, B., (1983) Localisation du nickel dans les minerais «garnieritiques» de Nouvelle-Calédonie France Université de Strasbourg PhD thesis.Google Scholar
Petit, S. Prot, T. Decarreau, A. Mosser, C. and Toledo-Groke, M.C., (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile Clays and Clay Minerals 40 436445 10.1346/CCMN.1992.0400408.CrossRefGoogle Scholar
Petit, S. Caillaud, J. Righi, D. Madejová, J. Elsass, F. and Köster, H.M., (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany Clay Minerals 37 283297 10.1180/0009855023720034.CrossRefGoogle Scholar
Rabenhorts, M.C. Foss, J.E. and Fanning, D.S., (1982) Genesis of Maryland soils formed from serpentinite Soil Science Society of America Journal 46 607616 10.2136/sssaj1982.03615995004600030032x.CrossRefGoogle Scholar
Rancourt, D.G., (1994) Mössbauer spectroscopy of minerals. I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions American Mineralogist 21 244249.Google Scholar
Rancourt, D.G., (1994) Mössbauer spectroscopy of mineral. II. Problem of resolving cis and trans octahedral Fe2+ sites American Mineralogist 21 250257.Google Scholar
Rancourt, D.G. Dang, M.Z. and Lalonde, A.E., (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas American Mineralogist 11 3443.Google Scholar
Rancourt, D.G. McDonald, A.M. Lalonde, A.E. and Ping, J.Y., (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals American Mineralogist 78 17.Google Scholar
Reesman, A.L. Pickett, E.E. and Keller, W.D., (1969) Aluminous ions in aqueous solutions American Journal of Science 267 99113 10.2475/ajs.267.1.99.CrossRefGoogle Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift fuer Pflanzenernaehrung, Duengung, Bodenkunde 105 3 194201 10.1002/jpln.3591050303.CrossRefGoogle Scholar
Shirozu, H., Suyo, T. and Shimoda, S., (1978) Chlorite minerals Clays and Clay Minerals of Japan Amsterdam Elsevier 243264 10.1016/S0070-4571(08)70688-5.CrossRefGoogle Scholar
Smith, B.F.L. Mitchell, B.D. and Wilson, M.J., (1987) Characterization of poorly ordered minerals by selective chemical methods A Handbook of Determinative Methods in Clay Mineralogy London Chapman & Hall 275294.Google Scholar
Trescases, J.J., (1969) Premières observations sur l’altération des péridotites de Nouvelle-Calédonie Pédologie, Géochimie, Géomorphologie, cahier. O.R.S.T.O.M., Série. Géologie, Paris 1 2757.Google Scholar
Trescases, J.J., (1975) L’évolution géochimique supergène des roches ultrabasiques en zone tropicale Formations des gisements nickélifères de Nouvelle-Calédonie France Université de Poitiers PhD thesis.Google Scholar
Trescases, J.J., (1986) Nickeliferous laterites: A review on the contributions of the last ten years Geological Survey of India, Memoirs 120 5162.Google Scholar
Wesolowski, D.J., (1992) Aluminum speciation and equilibria in aqueous solution: The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C Geochimica et Cosmochimica Acta 56 10651091 10.1016/0016-7037(92)90047-M.CrossRefGoogle Scholar
Wildman, W.E. Jackson, M.L. and Whittig, L.D., (1968) Iron-rich montmorillonite formation in soils derived from serpentinite Soil Science Society of America Proceedings 32 787794 10.2136/sssaj1968.03615995003200060025x.CrossRefGoogle Scholar