Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:22:12.585Z Has data issue: false hasContentIssue false

First Evidence of Multiple Octahedral Al Sites in Na-Montmorillonite by 27Al Multiple Quantum MAS NMR

Published online by Cambridge University Press:  01 January 2024

Takafumi Takahashi*
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, 293-8511 Japan
Koji Kanehashi
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, 293-8511 Japan
Koji Saito
Affiliation:
Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, 293-8511 Japan
*
* E-mail address of corresponding author: takahashi.takafumi@nsc.co.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The configuration of hydroxyl groups around the octahedral cations of 2:1 phyllosilicate minerals has long been an important question in clay science. In the present study, 27Al multiple quantum (MQ) magic angle spinning nuclear magnetic resonance (MAS NMR) was applied to the local structural analysis of octahedral Al positions in a purified Na-montmorillonite. Three octahedral Al sites ([6]Ala, [6]Alb, and [6]Alc) are distinguished by 27Al 5QMAS NMR, whereas these sites are not differentiated by 27Al MAS and 3QMAS NMR. The isotropic chemical shift (δcs) and the quadrupolar product (PQ) were estimated to be 5.8 ppm and 2.6 MHz for [6]Ala, 6.2 ppm and 3.0 MHz for [6]Alb, and 6.7 ppm and 3.7 MHz for [6]Alc, respectively. The three Al sites originated from geometric isomers with cis and trans structures, which have mutually different configurations of the OH groups around the central Al3+ ions. From the view point of symmetry for the OH groups, [6]Ala and [6]Alb in the upfield region were assigned to cis sites, and [6]Alc in the downfield region was assigned to a trans site. The occurrence of multiple Al sites implies that Na-montmorillonite used in the present study has cis-vacant structure in the octahedral sheet. This is a reasonable insight, supported by the chemical composition and the differential thermal analysis data of the Na-montmorillonite.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Abollino, O. Aceto, M. Malandrino, M. Sarzanini, C. and Mentasti, E., 2003 Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances Water Research 37 16191627 10.1016/S0043-1354(02)00524-9.CrossRefGoogle ScholarPubMed
Amoureux, J.P. Huguenerd, C. Engelke, F. and Taulelle, F., 2002 Unified representation of MQMAS and STMAS NMR of half-integer quadrupolar nuclei Chemical Physics Letters 356 497504 10.1016/S0009-2614(02)00398-6.CrossRefGoogle Scholar
Bardy, M. Bonhomme, C. Fritsch, E. Maquet, J. Hajjar, R. Allard, T. Derenne, S. and Calas, G., 2007 Al speciation in tropical podzols of the upper Amazon Basin: A solid-state 27Al MAS and MQMAS NMR study Geochimica et Cosmochimica Acta 71 32113222 10.1016/j.gca.2007.04.024.CrossRefGoogle Scholar
Benna, M. Kbir-Ariguib, N. Clinard, C. and Bergaya, F., 2001 Static filtration of purified sodium bentonite clay suspensions. Effect of clay content Applied Clay Science 19 103120 10.1016/S0169-1317(01)00050-3.CrossRefGoogle Scholar
Brevard, C. and Granger, P., 1983 Ruthenium NMR spectroscopy: a promising structural and analytical tool. General trends and applicability to organometallic and inorganic chemistry Inorganic Chemistry 22 532535 10.1021/ic00145a033.CrossRefGoogle Scholar
Cong, X. and Kirkpatrick, R.J., 1996 29Si MAS NMR Study of the Structure of Calcium Silicate Hydrate Advanced Cement Based Materials 3 144156 10.1016/S1065-7355(96)90046-2.CrossRefGoogle Scholar
Cuadros, J., 2002 Structural insights from the study of Cs-exchanged smectites submitted to wetting-and-drying cycles Clay Minerals 37 473486 10.1180/0009855023730046.CrossRefGoogle Scholar
Drits, V.A. Besson, G. and Mueller, F., 1995 An improved model for structural transformation of heat-treated aluminous dioctahedral 2:1 layer silicates Clays and Clay Minerals 43 718731 10.1346/CCMN.1995.0430608.CrossRefGoogle Scholar
Drits, V.A. McCarty, D.K. and Zviagina, B.B., 2006 Crystal-chemical factors responsible for the distribution of octahedral cations over trans and cis sites indioctahedral 2:1 layer silicates Clays and Clay Minerals 54 131152 10.1346/CCMN.2006.0540201.CrossRefGoogle Scholar
Fitzgerald, J.J. Hamza, A.I. Bronnimann, C.E. and Dec, S.F., 1995 Studies of the solid/solution ‘interfacial’ delamination of kaolinite in HCL(aq) using 1H CRAMPS and SP/MAS 29Si NMR spectroscopy Journal of the American Chemical Society 119 71057113 10.1021/ja970305m.CrossRefGoogle Scholar
Frydman, L. and Harwood, J.S., 1995 Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR Journal of the American Chemical Society 117 53675368 10.1021/ja00124a023.CrossRefGoogle Scholar
Gore, K.U. Abraham, A. Hegde, H. Kumar, R. Amoureux, J.P. and Ganapathy, S., 2002 29Si, and 27Al MAS/3Q-MAS NMR Studies of High Silica USY Zeolites Journal of Physical Chemistry B 106 61156120 10.1021/jp0143241.CrossRefGoogle Scholar
Hedley, C.B. Yuan, G. and Theng, B.K.G., 2007 Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants Applied Clay Science 35 180188 10.1016/j.clay.2006.09.005.CrossRefGoogle Scholar
Juranić, N. Ćelap, M.B. Vućelić, D. Malinar, M.J. and Radivoja, P.N., 1977 The 13C and 59Co nuclear magnetic resonance study of mixed Co(III) complexes containing glycinato ligand Inorganiea Chimiea Acta 25 229232 10.1016/S0020-1693(00)95718-9.CrossRefGoogle Scholar
Koerner, H. Hampton, E. Dean, D. Turgut, Z. Drummy, L. Mirau, P. and Vaia, R., 2005 Generating triaxial reinforced epoxy/montmorillonite nanocomposites with uniaxial magnetic fields Chemistry of Materials 17 19901996 10.1021/cm048139m.CrossRefGoogle Scholar
Komine, H., 2004 Simplified evaluation of swelling characteristics of bentonites Engineering Geology 71 265279 10.1016/S0013-7952(03)00140-6.CrossRefGoogle Scholar
Laszlo, P. 1983(editor) () NMR of Newly Accessible Nuclei. chapter 9. Vol, 2. Academic Press, London.Google Scholar
Lippmaa, E. Mägi, M. Samson, A. Engelhardt, G. and Grimmer, A.R., 1980 Structural studies of silicates by solid-state high-resolutionsilicon-29 NMR Journal of the American Chemical Society 102 4889–4803 10.1021/ja00535a008.CrossRefGoogle Scholar
Lippmaa, E. Samson, A. and Magi, M., 1986 High-resolution aluminum-27 NMR of aluminosilicates Journal of the American Chemical Society 108 17301735 10.1021/ja00268a002.CrossRefGoogle Scholar
Mann, B.E., 1991 Transition Metal NMR New York Elsevier 177 pp.Google Scholar
Mooney, R.W. Keenan, A.G. and Wood, L.A., 1952 Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction Journal of the American Chemical Society 74 12711374.CrossRefGoogle Scholar
Ohkubo, T. Kanehashi, K. Saito, K. and Ikeda, Y., 2003 Observationof two 4-coordinated Al sites in montmorillonite using high magnetic field strength 27Al MQMAS NMR Clays and Clay Minerals 51 513518 10.1346/CCMN.2003.0510505.CrossRefGoogle Scholar
Rochon, R.D. and Buculei, V., 2004 Multinuclear NMR study and crystal structure of complexes of the types cis and trans-Pt(amine)2I2 Inorganica Chimica Acta 357 22182230 10.1016/j.ica.2003.10.039.CrossRefGoogle Scholar
Sato, H., 2005 Effects of the orientation of smectite particles and ionic strength on diffusion and activation enthalpies of I and Cs+ ions in compacted smectite Applied Clay Science 29 267281 10.1016/j.clay.2005.02.003.CrossRefGoogle Scholar
Steel, P.J. Ahousse, F.L. Lerner, D. and Marzin, C., 1983 New ruthenium(II) complexes with pyridylpyrazole ligands. Photosubstitutionand 1H, 13C, and 99Ru NMR structural studies Inorganic Chemistry 22 14881493 10.1021/ic00152a014.CrossRefGoogle Scholar
Takahashi, T. Ohkubo, T. and Ikeda, Y., 2006 Montmorillonite alignment induced by magnetic field: Evidence based on the diffusion anisotropy of water molecules Journal of Colloid and Interface Science 299 198203 10.1016/j.jcis.2006.01.049.CrossRefGoogle ScholarPubMed
Takahashi, T. Ohkubo, T. Suzuki, K. and Ikeda, Y., 2007 High resolution solid state NMR study on dissolution and alteration of Na-montmorillonite under highly alkaline conditions Microporous and Mesoporous Materials 106 284297 10.1016/j.micromeso.2007.03.008.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites Clay Minerals 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Uno, Y. Sasaki, T. and Tatematsu, T., 1992 Dehydration process of smectites under controlled steam pressure Nendo Kagaku 32 129138.Google Scholar
Xue, S. Pinnavaia, T.J., Carrado, K.A. and Bergaya, F., 2007 Overview of clay-based polymer nanocomposites (CPN) Clay-based Polymer Nanocomposites (CPN) Chantilly, VA, USA The Clay Minerals Society 124.Google Scholar
Yamasaki, A. Yajima, F. and Fujiwara, S., 1968 Nuclear magnetic resonance studies on cobalt complexes. I. Cobalt-59 nuclear-magnetic resonance spectra of cobalt (III) complexes Inorganica Chimica Acta 2 3942 10.1016/S0020-1693(00)86991-1.CrossRefGoogle Scholar
Zazzi, Å Hirsch, T.K. Lenova, E. Kaikkonen, A. Grins, J. Annersten, H. and Eden, M., 2006 Structural investigations of natural and synthetic chlorite minerals by X-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance Clays and Clay Minerals 54 252265 10.1346/CCMN.2006.0540210.CrossRefGoogle Scholar