Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T07:36:01.923Z Has data issue: false hasContentIssue false

First Occurrence of a Stacking Sequence Including (±60°, 180°) Rotations in Mg-Rich Annite

Published online by Cambridge University Press:  28 February 2024

Toshihiro Kogure*
Affiliation:
Mineralogical Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
Massimo Nespolo*
Affiliation:
Mineralogical Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
*
E-mail of corresponding author: kogure@min.s.u-tokyo.ac.jp
Present address: National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-shi, Ibaraki 305-0044 Japan.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transmission electron microscopy (TEM) observation shows narrow regions in a Ti-containing Mg-rich annite of composition (K0.90Na0.02)(Mg0.72Fe2+1.78Mn0.03Ti0.27Al0.05)(Si2.77Al1.23)O10(OH,F)2 from a granitic rock, where the ±60° and 180° stacking angles occur extensively. These regions are a few hundreds of nanometers thick along the [001]* direction and are within 1M or 2M1 annite. The stacking sequence in one of these regions was determined by two atomic-resolution images recorded along [1̄10] and [010] of the same crystal. Stacking sequences with ± 120° or 180° rotations are dominant, although those with ±60° rotations occur also. Locally 2O and more complex sequences exist. Compositional analysis by TEM indicated no difference in the chemical compositions between these regions and the adjacent ones with regular 1M or 2M1 stacking sequence. The origin of these unusual stacking sequences in annite is discussed.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Amouric, M. and Baronnet, A., 1983 Effect of early nucleation conditions on synthetic muscovite polytypism as seen by high resolution transmission electron microcopy Physics and Chemistry of Minerals 9 146159 10.1007/BF00308372.CrossRefGoogle Scholar
Backhaus, K.-O. and Durovic, S., 1984 Polytypism of micas. I. MDO polytypes and their derivation Clays and Clay Minerals 32 453463 10.1346/CCMN.1984.0320603.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1980 Crystal Chemistry of True Micas Micas, Reviews in Mineralogy, Volume 13 Washington D.C. Mineralogical Society of America 1360.Google Scholar
Bailey, S.W., 1988 X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite Clays and Clay Minerals 36 193213 10.1346/CCMN.1988.0360301.CrossRefGoogle Scholar
Banfield, J.F. and Murakami, T., 1998 Atomic-resolution transmission electron microscope evidence for the mechanism by which chlorite weathers to 1:1 semi-regular chlorite-vermiculite American Mineralogist 83 348357 10.2138/am-1998-3-419.CrossRefGoogle Scholar
Baronnet, A., 1973 Sur les origines des dislocations vis et des spirales de croissance dans les micas Journal of Crystal Growth 19 193198 10.1016/0022-0248(73)90109-7.CrossRefGoogle Scholar
Baronnet, A. and Kaldis, E., 1980 Polytypism in micas: A survey with emphasis on the crystal growth aspects Current Topics in Materials Science, Volume 5 Amsterdam North-Holland Publishing Company 447548.Google Scholar
Baronnet, A. and Amouric, M., 1986 Growth spirals and complex polytypism in micas. II. Occurrence frequencies in synthetic species Bulletin de Minéralogie 109 489508.CrossRefGoogle Scholar
Baronnet, A. and Kang, Z.C., 1989 About the origin of mica polytypes Phase Transitions 16/17 477493 10.1080/01411598908245724.CrossRefGoogle Scholar
Baronnet, A. Nitsche, S. and Kang, Z.C., 1993 Layer stacking microstructures in a biotite single crystal. A combined HREM-AEM study Phase Transitions 43 107128 10.1080/01411599308207805.CrossRefGoogle Scholar
Belov, N.V., 1949 The twin laws of micas and micaceous minerals Mineralogicheskii sbomik L’vovskogo geologi-cheskogo obshchestva (L’vov university) 3 2940.Google Scholar
Drits, V.A. and McCarty, D.K., 1996 The nature of diffraction effects from illite and illite/smectite consisting of in-terstratified transvacant and cis-vacant 2:1 layers; A semiquantitative technique for determination of layer-type content American Mineralogist 81 852863 10.2138/am-1996-7-808.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., 1990 X-ray Diffraction by Disordered Lamellar Structures New York Springer Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Drits, V.A. Zvyagin, B.B. and Tokmakov, P.P., 1966 Gümbelite—A dioctahedral mica 2M 2 Transactions (Doklady) Academy Sciences SSSR: Earth Science Section 170 156159.Google Scholar
Drits, V.A. Plançon, B.A. Sakharov, B.A. Besson, G. Tsi-pursky, S.I. and Tchoubar, C., 1984 Diffraction effect calculated for structural models of K-saturated montmorillonite containing different types of defects Clay Minerals 19 541561 10.1180/claymin.1984.019.4.03.Google Scholar
Ďurovič, S. and Weiss, Z., 1986 OD structures and polytypes Bulletin de Minéralogie 109 1529.CrossRefGoogle Scholar
Ďurovič, S. Weiss, Z. and Backhaus, K.-O., 1984 Polytypism of micas. II. Classification and abundance of MDO polytypes Clays and Clay Minerals 32 454474.CrossRefGoogle Scholar
Ferrow, E.A. and Roots, M., 1989 A preparation technique for TEM specimens; application to synthetic Mg-chlorite European Journal of Mineralogy 1 815819 10.1127/ejm/1/6/0815.CrossRefGoogle Scholar
Filut, M.A. Rule, A.C. and Bailey, S.W., 1985 Crystal structure refinement of anandite-2Or, a barium- and sulfur-bearing trioctahedral mica American Mineralogist 70 12981308.Google Scholar
Giuseppetti, G. and Tadini, C., 1972 The crystal structure of 20 brittle mica: anandite Tschermaks Mineralogische und Petrographische Mitteilungen 18 169184 10.1007/BF01134206.CrossRefGoogle Scholar
Hazen, R.M. and Wones, D.R., 1972 The effect of cation substitutions on the physical properties of trioctahedral micas American Mineralogist 57 103129.Google Scholar
Iijima, S. and Buseck, P.R., 1978 Experimental study of disordered mica structure by high-resolution electron microscopy Acta Crystallographica A34 709719 10.1107/S0567739478001473.CrossRefGoogle Scholar
Kilaas, R. and Bailey, G.W., 1991 HREM image simulation Proceeding of 49th Electron Microscope Society of America Meeting, San Francisco San Francisco San Francisco Press 528529.Google Scholar
Kogure, T. and Banfield, J.F., 1998 Direct identification of the six polytypes of chlorite characterized by semirandom stacking American Mineralogist 83 925930 10.2138/am-1998-7-825.CrossRefGoogle Scholar
Kogure, T. and Murakami, T., 1996 Direct identification of biotite/vermiculite layers in hydrobiotite using high-resolution TEM Mineraiogical Journal 18 131137 10.2465/minerj.18.131.CrossRefGoogle Scholar
Kogure, T. and Nespolo, M., 1999 A TEM study of long-period mica polytypes: Determination of the stacking sequence of oxybiotite by means of atomic-resolution images and periodic intensity distribution (PID) Acta Crystallographica B55 507516 10.1107/S0108768199003845.CrossRefGoogle Scholar
Mauguin, M.C.h., 1928 Etude de Micas au moyen du rayons X Bulletin de la Societé Française de Minéralogie et Cristallografie 51 285332.CrossRefGoogle Scholar
McCarty, D.K. and Reynolds, R.C. Jr., 1995 Rotationally disordered illite/smectite in Paleozoic K-bentonites Clays and Clay Minerals 43 271284 10.1346/CCMN.1995.0430302.CrossRefGoogle Scholar
Nespolo, M., 1999 Analysis of family reflections of OD mica polytypes, and its application to twin identification Mineralogical Journal 21 5385 10.2465/minerj.21.53.CrossRefGoogle Scholar
Nespolo, M. and Takeda, H., 1999 Inhomogeneous mica polytypes: 8-layer polytype of the 2M 1 structural series determined by the periodic intensity distribution (PID) analysis of the X-ray diffraction pattern Mineralogical Journal 21 103118 10.2465/minerj.21.103.CrossRefGoogle Scholar
Nespolo, M. Takeda, H. Ferraris, G. and Merlino, S., 1997 Crystallography of mica polytypes Modular Aspects of Minerals! EMU Notes in Mineralogy, Volume 1 Budapest Eöt-vös University Press 81118.CrossRefGoogle Scholar
Nespolo, M. Takeda, H. and Ferraris, G., 1998 Representation of the axial settings of mica polytypes Acta Crystallographica A54 348356 10.1107/S0108767397019910.CrossRefGoogle Scholar
Nespolo, M. Takeda, H. Kogure, T. and Ferraris, G., 1999 periodic intensity distribution (PID) of mica polytypes: Symbols, structural model orientation and axial settings Acta Crystallographica A55 659676 10.1107/S0108767398017735.CrossRefGoogle Scholar
Ni, Y. and Hughes, J.M., 1996 The crystal structure of nan-pingite-2M 2, the Cs end-member of muscovite American Mineralogist 81 105110 10.2138/am-1996-1-213.CrossRefGoogle Scholar
Ochi, S., 1982 The Ryoke granitic rocks in the Takanawa Peninsula, Shikoku, Japan Journal of the Geological Society of Japan 88 511512 10.5575/geosoc.88.511.Google Scholar
Ohta, T. Takéuchi, Y. and Takeda, H., 1979 Structural study of brittle micas (II). Statistical mode of stacking sequence in a valuevite crystal as deduced by computer simulation Mineralogical Journal 9 115 10.2465/minerj.9.1.CrossRefGoogle Scholar
Penn, R.L. and Banfield, J.F., 1998 Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals Science 281 969971 10.1126/science.281.5379.969.CrossRefGoogle ScholarPubMed
Radoslovich, E.W., 1959 Structural control of polymorphism in micas Nature 163 253 10.1038/183253a0.CrossRefGoogle Scholar
Ramsdell, L.S., 1947 Studies on silicon carbide American Mineralogist 32 6482.Google Scholar
Reynolds, R.C., Reynolds, R.C. Jr. and Walkers, J.R., 1993 Three-dimensional powder X-ray diffraction from disordered illite: Simulation and interpretation of the diffraction patters CMS Workshop Lectures, Volume 5: Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals Boulder, Colorado The Clay Minerals Society 4377.Google Scholar
Rieder, M. Huka, M. Kučerová, D. Minařík, L. Obermajer, J. and Povondra, P., 1970 Chemical composition and physical properties of lithiumiron micas from the Krušné hory Mts. (Erzgebirge) Contributions to Mineralogy and Petrology 27 131158 10.1007/BF00371980.CrossRefGoogle Scholar
Rieder, M. Cavazzini, G. D’yakonov, Yu, S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval’, P.V. Müller, G. Neiva, A.M.R. Radoslowich, E.W. Robert, J.L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1998 Nomenclature of the micas Canadian Mineralogist 36 905912.Google Scholar
Ross, M. Takeda, H. and Wones, D.R., 1966 Mica polytypes: Systematic description and identification Science 151 191193 10.1126/science.151.3707.191.CrossRefGoogle ScholarPubMed
Russell, R.L. and Guggenheim, S., 1999 Crystal structure of near-end-member phlogopite at high temperatures and heat-treated Fe-rich phlogopite: The influence of the O, OH, F site Canadian Mineralogist 37 711720.Google Scholar
Smith, J.V. and Yoder, H.S., 1956 Experimental and theoretical studies of the mica polymorphs Mineralogical Magazine 31 209235 10.1180/minmag.1956.031.234.03.CrossRefGoogle Scholar
Sun, B.N. and Baronnet, A., 1989 Hydrothermal growth of OH-phlogopite single crystals II. Role of Cr and Ti adsorption on crystal growth rates Chemical Geology 78 301314 10.1016/0009-2541(89)90065-X.CrossRefGoogle Scholar
Sunagawa, I. Koshino, Y. Asakura, M. and Yamamoto, T., 1975 Growth mechanism of some clay minerals Fort-schritte der Mineralogie 52 217224.Google Scholar
Takeda, H., 1967 Determination of the layer stacking sequence of a new complex mica polytype: A 4-layer lithium fluorophlogophite Acta Crystallographica 22 845853 10.1107/S0365110X67001665.CrossRefGoogle Scholar
Takeda, H. and Burnham, C.W., 1969 Fluor-polylithionite: A lithium mica with nearly hexagonal Si2O5 2_ ring Mineralogical Journal 6 102109 10.2465/minerj1953.6.102.CrossRefGoogle Scholar
Takeda, H. and Mori, N., 1970 Crystal chemistry of rock-forming silicate minerals. II. Exsolutions and structural variations of solid solutions Journal of the Crystallographic Society of Japan 12 231248 10.5940/jcrsj.12.231 (in Japanese).Google Scholar
Takeda, H. and Morosin, B., 1975 Comparison of observed and predicted parameters of mica at high temperature Acta Crystallographica B31 24442452 10.1107/S0567740875007777.CrossRefGoogle Scholar
Takeda, H. and Ross, M., 1995 Mica polytypism: Identification and origin American Mineralogist 80 715724 10.2138/am-1995-7-808.CrossRefGoogle Scholar
Takeda, H. Haga, N. and Sadanaga, R., 1971 Structural investigation of polymorphic transition between 2M 2-, 1M-lepidolite and 2M 1-muscovite Mineralogical Journal 6 203215 10.2465/minerj1953.6.203.CrossRefGoogle Scholar
Takéuchi, Y. and Sadanaga, R., 1959 The crystal structure of xanthophyllite Acta Crystallographica 12 945946 10.1107/S0365110X59002705.CrossRefGoogle Scholar
Tomura, S. Kitamura, M. and Sunagawa, I., 1978 High resolution electron microscopy of dioctahedral mica Mineralogical Journal 9 129136 10.2465/minerj.9.129.CrossRefGoogle Scholar
Weiss, Z. and Wiewióra, A., 1986 Polytypism of micas. III. X-ray diffraction identification Clays and Clay Minerals 34 5368 10.1346/CCMN.1986.0340107.CrossRefGoogle Scholar
Zhukhlistov, A.P. Zvyagin, B.B. Soboleva, S.V. and Fedo-tov, A.F., 1973 The crystal structure of the dioctahedral mica 2M 2 determined by high voltage electron diffraction Clays and Clay Minerals 21 465470 10.1346/CCMN.1973.0210606.CrossRefGoogle Scholar
Zhukhlistov, A.P. Zvyagin, B.B. and Pavlishin, V.I., 1990 Polytypic 4M modification of Ti-biotite with nonuniform alternation of layers, and its appearance in electron-diffraction patterns from textures Soviet Physics Crystallography 35 232236.Google Scholar
Zvyagin, B.B., 1967 Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press 10.1007/978-1-4615-8612-8.CrossRefGoogle Scholar
Zvyagin, B.B., 1988 Polytypism of crystal structures Computer Mathematics Applications 16 569591 10.1016/0898-1221(88)90247-7.CrossRefGoogle Scholar
Zvyagin, B.B. and Merlino, S., 1997 Modular analysis of crystal structures Modular Aspects of MineralslEMU Notes in Mineralogy, Volume 1 Budapest Eötvös University Press 345372.CrossRefGoogle Scholar
Zvyagin, B.B. Vrublevskaya, Z.V. Zhukhlistov, A.P. Sidorenko, O.V. Soboleva, S.V. and Fedotov, A.E., 1979 High-Voltage Electron Diffraction in the Study of Layered Minerals Moscow Nauka Press (in Russian).Google Scholar