Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T04:30:02.072Z Has data issue: false hasContentIssue false

Geology and mineralogy of late miocene clayey sediments in the southeastern part of the Central Anatolian Volcanic Province, Turkey

Published online by Cambridge University Press:  01 January 2024

Ali Gürel
Affiliation:
Niğde University, Department of Geological Engineering, TR-51200 Niğde, Turkey
Selahattin Kadir*
Affiliation:
Eskisehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskisehir, Turkey
*
* E-mail address of corresponding author: skadir_esogu@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Late Miocene clayey sediments were deposited in lake-margin and shallow-lake environments of the southeastern Central Anatolian Volcanic Province (CAVP). Yellow to red mudstone, alternating with thin beds of conglomerate and sandstone in the Mustafapaşa Formation, is overlain by altered white Cemilköy ignimbrite. Grain size fines upward in each sequence (conglomerate, sandstone, and mudstone). The occurrence of reddish coloration upward, ripple marks, desiccation cracks, plant rootlets and remnants, and the development of initial-stage paleosols in association with smectite reveal that the area underwent alternating periods of siliciclastic and volcaniclastic sediment supply (wet) and drying. Micromorphologically, the development of spongy smectite in mudstone of the Mustafapaşa Formation and vermiform kaolinite in the Cemilköy ignimbrite on resorbed detrital feldspar and devitrified glass reveals in situ precipitation driven by dissolution and precipitation mechanisms. In addition, alteration of these sediments may have resulted in the depletion of soluble alkaline elements, such as Ca, Na, and K, from the ignimbrite downward into the Mustafapaşa Formation. Alternatively, the leaching of these elements — due to the hydrologically open system of the lake environment — may have resulted in the enhancement of Al+Fe/Si-favored precipitation of kaolinite in an acidic environmental condition, namely, of the altered Cemilköy ignimbrite at the top of the profile of the Mustafapaşa Formation, and of smectite in an alkaline setting within lower-level sediments where carbonate minerals were lacking. The coexistence of smectite with accessory illite indicates that illitization occurred via release of K and Al during excess desorption of feldspar. Large Ni and Co values in mudstone samples, and Fe oxidized and partly chloritized pyroxene and hornblende, indicate that the basin was also affected by ophiolite-related supply.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Aydar, E. Gündoğdu, N. Bayhan, F.L. and Gourgaud, A., 1994 Volcano — structural and petrological investigation of the Cappadocian Qaternary volcanism TUBİTAK Yerbilimleri Dergisi 3 2545 (in Turkish with English abstract).Google Scholar
Aziz, H.A. Sanz-Rubıo, E. Calvo, J.P. Hilgen, F.J. and Krijgsman, W., 2003 Palaeoenvironmental reconstruction of a middle Miocene alluvial fan to cyclic shallow lacustrine depositional system in the Calatayud Basin (NE Spain) Sedimentology 50 211236 10.1046/j.1365-3091.2003.00544.x.10.1046/j.1365-3091.2003.00544.xCrossRefGoogle Scholar
Batum, I., 1978 Geology and petrography of Acıgöl and Göllüdağ volcanics at southwest of Nevşehir Central Anatolia (Turkey) Yerbilimleri 4 1–2 7088 (in Turkish with English abstract).Google Scholar
Berner, E.K. and Berner, R.A., 1996 Global Environment: Water, Air, and Geochemical Cycles New Jersey Prentice Hall 376 pp.Google Scholar
Brindley, G.W., Brindley, G.W. Brown, G., 1980 Quantitative X-ray mineral analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.10.1180/mono-5.7CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology New York Springer Verlag 10.1007/978-3-642-85916-8 623 pp.10.1007/978-3-642-85916-8CrossRefGoogle Scholar
Christidis, G. and Scott, P.W., 1997 The origin and control of colour of white bentonites from the Aegean islands of Milos and Kimolos, Greece Mineralium Deposita 32 271279 10.1007/s001260050092.10.1007/s001260050092CrossRefGoogle Scholar
Christidis, G. Scott, P.W. and Marcopoulast, T., 1995 Origin of the bentonite deposits of Eastern Milos and Kimalos, Greece: geology, geological, mineralogical and geochemical evidence Clays and Clay Minerals 43 6377 10.1346/CCMN.1995.0430108.10.1346/CCMN.1995.0430108CrossRefGoogle Scholar
Compton, J.S., 1991 Origin and diagenesis of clay minerals in the Monterey Formation, Santa Maria Basin Area, California Clays and Clay Minerals 39 449466 10.1346/CCMN.1991.0390501.10.1346/CCMN.1991.0390501CrossRefGoogle Scholar
Curtis, C.D., 1983 Link between aluminium mobility and destruction of secondary porosity Bulletin of the American Association of Petroleum Geologists 67 380384.Google Scholar
Dhont, D. Chorowicz, J. Yurur, T. Froger, J.L. Kose, O. and Gündoğdu, N., 1998 Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey Journal of Volcanology and Geothermal Research 85 3354 10.1016/S0377-0273(98)00048-1.10.1016/S0377-0273(98)00048-1CrossRefGoogle Scholar
Dill, H.G. Kaufhold, S. Khishigsuren, S. and Bulgamaa, J., 2005 Discovery and origin of a Palaeogene smectite-bearing clay deposit in the SE Gobi (Mongolia) Clay Minerals 40 351367 10.1180/0009855054030178.10.1180/0009855054030178CrossRefGoogle Scholar
Dirik, K. and Göncüoğlu, M C, 1996 Neotectonic characterisics of central Anatolia International Geology Review 38 807817 10.1080/00206819709465363.10.1080/00206819709465363CrossRefGoogle Scholar
Echle, W., 1974 Zur Mineralogie und petrogeneses jungtertiarer tuffitischer Sedimente im Neogen-Becken nördlich Mihalıççık (Westanatolien, Türkei) Neues Jahrbuch für Mineralogie Abhandlungen 133 303321.Google Scholar
Ercan, T. Fujitani, T. Matsuda, J. Tokel, S. Notsu, K. Ul, T. Can, B. Selvi, Y. Yıldırım, T. Fişekçi, A. Ölmez, M. and Akbaşlı, A., 1990 The origin and evolution of the Cenezpic volcanism of Hasandağı-Karacadağ area (Central Anatolia) Jeomorfoloji Dergisi 18 3954.Google Scholar
Folk, R.L. and Ward, W., 1957 Brazos River bar: A study in the significance of grain size parameters Journal of Sedimentary Petrology 41 10451058.Google Scholar
Gierlowski-Kodesch, E., 1998 Carbonate deposition in an ephemeral siliciclastic alluvial system: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hardfort Basin, USA Palaeogeography, Palaeoclimatology, Palaeoecology 140 161184 10.1016/S0031-0182(98)00039-X.10.1016/S0031-0182(98)00039-XCrossRefGoogle Scholar
Grim, R.E. and Güven, N., 1978 Bentonites, Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 13137.Google Scholar
Göncüoğlu, M.C., 1981 Niğde Masifinde Viridin-Gınaysın kökeni TJK Bülteni 24 1 4551 (in Turkish with English abstract).Google Scholar
Gürel, A., 2006 Adsorption characteristics of heavy metals in soil zones developed on spilite Environmental Geology 51 333340 10.1007/s00254-006-0329-7.10.1007/s00254-006-0329-7CrossRefGoogle Scholar
Gürel, A. and Kadir, S., 2006 Geology, mineralogy and origin of clay minerals of the Pliocene fluvial lacustrine deposits in the Cappadocian volcanic province, central Anatolia, Turkey Clays and Clay Minerals 54 555570 10.1346/CCMN.2006.0540503.10.1346/CCMN.2006.0540503CrossRefGoogle Scholar
Hower, J. Eslinger, E.V. Hower, M. and Perry, E.A., 1976 Mechanisms of burial metamorphism of argillite sediments Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Iijima, A. (1980) Geology of natural zeolites and zeolitic rocks. Pp. 103118 in: Proceedings of the 5thInternational Conference on Zeolites (Rees, L.V.C., editor), London.Google Scholar
Iijima, A. and Tada, R., 1981 Silica diagenesis of Neogene diatomaceous and volcaniclast sediments in northern Japan Sedimentolgy 28 185200 10.1111/j.1365-3091.1981.tb01676.x.10.1111/j.1365-3091.1981.tb01676.xCrossRefGoogle Scholar
Inglès, M. and Anadón, P., 1991 Relationship of clay minerals to depositional environment in the non-marine Eocene Pontils Group, SE Ebro basin (Spain) Journal of Sedimentary Petrology 61 926939.Google Scholar
Innocenti, F. Mazzuoli, G. Pasquare, F. Di Radicati Brozolo, F. and Villari, L., 1975 The Neogene calcalkaline volcanism of Central Anatolia geochronological data on Kayseri-Niğde area Geological Magazine 112 349360 10.1017/S0016756800046744.10.1017/S0016756800046744CrossRefGoogle Scholar
Jones, J.B. and Segnit, E.R., 1971 The nature of opal I. Nomenclature and constituent phases Journal of Geological Society of Australia 18 5768 10.1080/00167617108728743.10.1080/00167617108728743CrossRefGoogle Scholar
Kadir, S. and Karakaş, Z., 2002 Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey Neues Jahrbuch für Mineralogie, Abhandlungen 177 113132.10.1127/0077-7757/2002/0177-0113CrossRefGoogle Scholar
Kadir, S. Baş, H. and Karakaş, Z., 2002 Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihahççık-Eskişehir, Turkey The Canadian Mineralogist 40 10911102 10.2113/gscanmin.40.4.1091.10.2113/gscanmin.40.4.1091CrossRefGoogle Scholar
Kayalı, R., Gürel, A., Davarcıoğlu, B., and Çiftçi, E. (2005) Investigation of the qualitative and quantitative properties of the raw industrial materials clay and diatomites found in Middle Anatolia by spectroscopic methods. TÜBİTAK, ÇAYDAG no: 1001Y067, p 157.Google Scholar
Karakaş, Z. and Kadir, S., 2006 Occurrence and origin of analcime in a Neogene volcano-sedimentary lacustrine environment, Beypazarı-Çayırhan, Ankara, Turkey Neues Jahrbuch für Mineralogie Abhandlungen 182 253264.10.1127/0077-7757/2006/0049CrossRefGoogle Scholar
Komadel, P. Lear, R.P. and Stucki, J.W., 1990 Reduction and reoxidation of nontronite: extent of reduction and reaction rates Clays and Clay Minerals 38 203208 10.1346/CCMN.1990.0380212.10.1346/CCMN.1990.0380212CrossRefGoogle Scholar
Le Pennec, J.L. Bourdier, J.L. Froger, A. Temel, A. Camus, G. and Gourgaud, A., 1994 Neogene ignimbirites of the Nevşehir Platetau (Central Turkey): stratigraphy, distribution and source constraints Journal of Volcanology and Geothermal Research 63 5987 10.1016/0377-0273(94)90018-3.10.1016/0377-0273(94)90018-3CrossRefGoogle Scholar
Lepetit, P., Viereck-Götte, L. and Gürel, A. (2007) Neogene Stratigraphy of the Nevşehir Plateau, Cappadocia, Turkey. Pp. 123 in: Symposium of the Geology of the Cappadocia Region, in the framework of the International Year of Planet Earth (Şener, M. and Gürel, A., editors).Google Scholar
Miall, A.D., 1996 The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology Berlin Springer 582 pp.Google Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and Identification and Analysis of Clay Minerals Oxford, UK Oxford University Press 332 pp.Google Scholar
Ocakoğlu, F., 2004 Mio-Pliocene basin development in the eastern part of the Cappadocian volcanic province (Central Anatolia, Turkey) and its implications for regional tectonics International Journal of Earth Science (Geologische Rundschau) 93 314328 10.1007/s00531-004-0390-y.10.1007/s00531-004-0390-yCrossRefGoogle Scholar
Pasquare, G., 1968 Geology of the Cenozoic volcanic area of Central Anatolia Atti delia Acad. No. delince; menorie serie VIII IX 55204 Roma.Google Scholar
Pasquaré, G. Poli, S. Venzolli, L. and Zanchi, A., 1988 Continental arc volcanism and tectonic setting in Central Anatolia, Turkey Tectonophysics 146 217230 10.1016/0040-1951(88)90092-3.10.1016/0040-1951(88)90092-3CrossRefGoogle Scholar
Pearce, J.A. Bender, J.F. De Long, S.E. Kidd, W.S.F. Low, P.J. Güner, Y. Şaroğlu, F. Yılmaz, Y. Moorbath, S. and Mitchell, J.G., 1990 Genesis of collisional volcanism in Eastern Anatolia, Turkey Journal of Volcanology and Geothermal Research 44 189229 10.1016/0377-0273(90)90018-B.10.1016/0377-0273(90)90018-BCrossRefGoogle Scholar
Starkey, H.C. and Blackmon, P.D. (1979) Clay mineralogy of Pleistocene Lake Tecopa, Inyo County, California. USGS Professional Paper, 1061, 34 pp.Google Scholar
Street-Perrott, F.A. Harrison, S.P. and Hecht, A.D., 1984 Lake levels and climate reconstruction Paleoclimate Analysis and Modeling New York John Wiley 291340.Google Scholar
Talbot, M.R., Fleet, A.J. Kelts, K. Talbot, M.R., 1988 The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa Lacustrine Petroleum Source Rocks London Geological Society 2943.Google Scholar
Talbot, M.R. Allen, P.A. and Reading, H.G., 1996 Lakes Sedimentary Environments: Processes, Facies and Stratigraphy Oxford, UK Blackwell Science 83124.Google Scholar
Temel, A. Gündoğdu, M.N. Gourgaud, A. and Le Pennec, J.L., 1998 Ignimbrites of Cappadocia Central Anatolia, Turkey: petrology and geochemistry Journal of Volcanology and Geothermal Research 85 447471 10.1016/S0377-0273(98)00066-3.10.1016/S0377-0273(98)00066-3CrossRefGoogle Scholar
Toprak, V., 1998 Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey Journal of Volcanology and Geothermal Research 85 5567 10.1016/S0377-0273(98)00049-3.10.1016/S0377-0273(98)00049-3CrossRefGoogle Scholar
Tucker, M.E., 1991 Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks Oxford, UK Blackwell Science 260 pp.Google Scholar
Walker, R.G., 1971 Nondeltaic depositional environments in the Catskill clastic wedge Bulletin of the Geological Society of America 82 13051326 10.1130/0016-7606(1971)82[1305:NDEITC]2.0.CO;2.10.1130/0016-7606(1971)82[1305:NDEITC]2.0.CO;2CrossRefGoogle Scholar
Weaver, C.E., 1989 Clays, Muds, and Shales Amsterdam Elsevier 819 pp.Google Scholar
Wedepohl, K.H. and Merian, E., 1984 Die Zusammenzetzung der oberen Erdkruste und natürlicher Kreislauf ausgewalter Metalle Metalle in der Unweit Germany Weinheim.Google Scholar
Ziegler, K., 2006 Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas Clay Minerals 41 355393 10.1180/0009855064110200.10.1180/0009855064110200CrossRefGoogle Scholar