Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T07:37:59.677Z Has data issue: false hasContentIssue false

High-Grade Diagenetic Dickite and 2M1 Illite From the Middle Proterozoic Kombolgie Formation (Northern Territory, Australia)

Published online by Cambridge University Press:  01 January 2024

Patricia Patrier*
Affiliation:
University of Poitiers, HydrASA, CNRS UMR 6532, 40 Avenue du Recteur Pineau, 86022 Poitiers cédex, France
Daniel Beaufort
Affiliation:
University of Poitiers, HydrASA, CNRS UMR 6532, 40 Avenue du Recteur Pineau, 86022 Poitiers cédex, France
Emmanuel Laverret
Affiliation:
University of Poitiers, HydrASA, CNRS UMR 6532, 40 Avenue du Recteur Pineau, 86022 Poitiers cédex, France
Patrice Bruneton
Affiliation:
COGEMA-BUM-DEX, 2 Rue Paul Dautier, 78141 Velizy cédex, France
*
*E-mail address of corresponding author: patricia.patrier@hyrasa.univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper was to define the nature and the relative chronology of the diagenetic clay bearing assemblages within sandstones of the Middle Proterozoic Kombolgie formation (Northern Territory, Australia). The detrital minerals of these rocks comprise quartz, accessory zircon, tourmaline, rutile and rare phengitic white micas. Diagenetic features consist of pore-sealing secondary quartz overgrowths, strong compaction shown by interlocked structures and stylolith joints, local hematization and the occurrence of two distinct clay parageneses. Blocky crystals of dickite constitute the earlier diagenetic clays. Their FTIR spectra and their DTA curves, with a sharp dehydroxylation endothermic peak near 680°C, are characteristic of the well-ordered dickite already encountered in many deeply-buried sandstones. Quartz overgrowth may be contemporaneous with the crystallization of dickite. Illite occurred during a subsequent stage as grain coatings and as pseudomorphs of dickite in the residual pores of the sandstones. Illite seems to be contemporaneous with the major deformation features associated with compaction phenomena at the maximal burial conditions experienced by the sandstone formation. These illites are essentially of 2M1 polytype. They display pseudohexagonal platy crystals with average diameters ranging from 2 to 10 µm. Their chemical composition is Al-rich (Ca0.01Na0.02K1.72) ()(Si6.27IVAl1.73)O20(OH)4. These Proterozoic rocks provide a natural reference for the illite end-member occurring as a replacement of kaolin subgroup minerals during burial diagenesis of sandstones The textural properties of the Kombolgie sandstones (absence of fracture network, low porosity, well-developed macroscopic stylolith joints…) and the crystal structure of both the diagenetic dickite and illite would tend to indicate that the Kombolgie sandstones were buried at a depth exceeding 5 km.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Altaner, S.P. and Ylagan, R.F., (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1 124.Google Scholar
Beaufort, D. Cassagnabere, A. Petit, S. Lanson, B. Berger, G. Lacharpagne, J.C. and Johansen, H., (1998) Kaolinite-to-dickite reaction in sandstone reservoirs Clay Minerals 33 297316 10.1180/000985598545499.Google Scholar
Beaufort, D. Patrier, P. Laverret, E. Bruneton, P. and Mondy, J., (2003) Clay alterations associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers Uranium Field Economic Geology Australia Northern Territory submitted.Google Scholar
Berger, G. Lacharpagne, J.C. Velde, B. Beaufort, D. and Lanson, B., (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences Applied Geochemistry 12 2335 10.1016/S0883-2927(96)00051-0.Google Scholar
Bish, D.L. Duffy, C.J., Stucki, J.W. Bish, D.L. and Mumpton, F.A., (1990) Thermogravimetric analysis of minerals Thermal Analysis in Clay Science Bloomington, Indiana Clay Minerals Society 96 157.Google Scholar
Bish, D.L. Reynolds, R.C. Jr., Bish, D.L. and Post, J.E., (1989) Sample preparation for X-ray diffraction Modern Powder Diffraction Washington D.C. Mineralogical Society of America 7399 10.1515/9781501509018-007.Google Scholar
Bjorlykke, K. Aagaard, P., Houseknecht, D.W. and Pittman, E.D., (1992) Clay minerals in North Sea sandstones Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones Tulsa, Oklahoma SEPM special publication 6580 10.2110/pec.92.47.0065.Google Scholar
Boles, J.R. and Franks, S.G., (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: implications of smectite diagenesis on sandstone cementation Journal of Sedimentary Petrology 49 55 70.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125 196.Google Scholar
Brindley, G.W. and Porter, A.R.D., (1978) Occurrence of dickite in Jamaica. Ordered and disordered varieties American Mineralogist 63 554 562.Google Scholar
Derome, D., Cuney, M., Cathelineau, M., Dubessy, J. and Bruneton, P. (2003) A detailed fluid inclusion study in silicified breccias from the Kombolgie sandstones (Northern Territory, Australia): application to the genesis of Middle-Proterozoic unconformity-type uranium deposits. Journal of Geochemical Exploration (submitted).Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray Diffraction by Disordered Lamellar Structures Heidelberg Springer-Verlag 371 pp.Google Scholar
Drits, V.A. Weber, F. Salyn, A.L. and Tsipursky, S., (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits Clays and Clay Minerals 41 389398 10.1346/CCMN.1993.0410316.Google Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., (1997) XRD measurements of mean crystallite thickness of illite and illite/smectite: reappraisal of the Kübler index and the Scherrer equation Clays and Clay Minerals 45 461475 10.1346/CCMN.1997.0450315.Google Scholar
Durak, B. Pagel, M. and Poty, B., (1983) Températures et salinités des fluides au cours des silicifications diagénétiques d’une formation gréseuse surmontant un gisement d’uranium du socle: l’exemple des grèis Kombolgie (Australie) Comptes Rendus de l’Académie des Sciences 296 II 571574 Paris.Google Scholar
Eberl, D.D. and Hower, J., (1976) Kinetics of illite formation Geological Society of America Bulletin 87 13261330 10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.Google Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.Google Scholar
Farmer, V.C. and Farmer, V.C., (1974) The layers silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.Google Scholar
Gustafson, L.B. and Curtis, L.W., (1983) Post-Kombolgie metasomatism at Jabiluka, Northern Territory, Australia, and its significance in the formation of high-grade uranium mineralization in lower Proterozoic rocks Economic Geology 78 2656 10.2113/gsecongeo.78.1.26.Google Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., (1987) Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.Google Scholar
Jaboyedoff, M., (1999) Transformations des interstratifiés illite-smectite vers l’illite et la phengite: un exemple dans la série carbonatée du domaine Briançonnais des Alpes suisses romandes Lausanne, Switzerland Université Lausanne Ph.D. thesis.Google Scholar
Jennings, S. and Thompson, G.R., (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, Southern California Journal of Sedimentary Petrology 56 89 98.Google Scholar
Kisch, H.J., Larsen, G. and Chilingar, G.W., (1983) Mineralogy and petrology of burial di agenesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks Amsterdam Elsevier 289 494.Google Scholar
Kübler, B., (1964) Les argiles, indicateurs du métamorphisme Revue de l’Institut Franç XIX 1093 1112.Google Scholar
Kübler, B., (1968) Evaluation quantitative du métamorphisme par cristallinité de l’illite Bulletin du Centre de Recherche de Pau 2 385 397.Google Scholar
Kyser, K., Hiatt, E., Renac, C., Durocher, K., Holk, G. and Deckart, K. (2000) Diagenetic fluids in paleo- and meso-Proterozoic sedimentary basins and their implications for long protracted fluid histories. Pp. 225262 in: Fluids and Basin Evolution (Kyser, K., editor). Short Course Series, 28, Mineralogical Association of Canada.Google Scholar
Lanson, B. and Champion, D., (1991) The I-S to illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.Google Scholar
Lanson, B. and Velde, B., (1992) Decomposition of X-ray diffraction patterns: a convenient way to describe complex diagenetic smectite-to-illite evolution Clays and Clay Minerals 40 629643 10.1346/CCMN.1992.0400602.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Petit, S. and Lacharpagne, J.C., (1995) Evolution de la structure cristallo-graphique des minéraux argileux dans le réservoir gréseux Rotliegend des Pays Bas Bulletin de Centres Recherches Exploration-Production Elf Aquitaine 19 243 265.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, off-shore of The Netherlands Journal of Sedimentary Research 66 501 518.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Bauer, A. Cassagnabère, A. and Meunier, A., (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review Clay Minerals 37 122 10.1180/0009855023710014.Google Scholar
Liu, K.W. (2002) Deep-burial diagenesis of the siliciclastic Ordovician Natal Group, South Africa. Sedimentary Geology, in press.Google Scholar
McAulay, G.E. Burley, S.D. Fallick, A.E. and Kusnir, N.J., (1994) Paleohydrodynamic fluid flow regimes during diagenesis in the Brent Group in the Hutton-NW Hutton reservoirs: constraints from oxygen isotope studies of authigenic kaolin and reverse flexural modelling Clay Minerals 29 609626 10.1180/claymin.1994.029.4.16.Google Scholar
Mackenzie, R.C. and Mackenzie, R.C., (1970) Simple phyllosilicates based on gibbs ite and brucite-like sheets Differential Thermal Analysis London and New York Academic Press 498 537.Google Scholar
Meunier, A. and Velde, B., (1989) Solid solutions in I/S mixed-layer minerals and illite American Mineralogist 74 1106 1112.Google Scholar
Moore, D.M. Reynolds, R.C. Jr., Moore, D.M. and Reynolds, R.C. Jr., (1989) Sample preparation techniques for clay minerals X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford and New York Oxford University Press 179 201.Google Scholar
Nadeau, P.H. and Reynolds, R.C. Jr., (1981) Burial and contact metamorphism in the Mancos shale Clays and Clay Minerals 29 249259 10.1346/CCMN.1981.0290402.Google Scholar
Needham, R.S., (1988) Geology of the Alligator Rivers Uranium Field, Northern Territory Bureau of Mineral Resources, Geology and Geophysics Bulletin Canberra Australian government publishing service 224, 96 pp.Google Scholar
Patrier, P., Laverret, E., Bruneton, P. and Beaufort, D. (2000) Signature texturale et minéralogique des argiles dans l’environnement des gisements d’uranium associés aux discordances d’âge protérozoïque, exemple du bassin de Kombolgie (Territoire du Nord, Australie). Metallogeny 2000 review and perspectives, Nancy (7–8 Dec 2000), extended abstracts, 129130.Google Scholar
Plumb, K.A., (1979) Structure and tectonic style of the Precambrian shields and platforms of northern Australia Tectonophysics 58 291325 10.1016/0040-1951(79)90314-7.Google Scholar
Plumb, K.A., (1979) The tectonic evolution of Australia Earth Science Reviews 14 205249 10.1016/0012-8252(79)90001-1.Google Scholar
Rawlings, D.J., (1999) Stratigraphic resolution of a multiphase intracratonic basin system: the McArthur Basin, northern Australia Australian Journal of Earth Sciences 46 703723 10.1046/j.1440-0952.1999.00739.x.Google Scholar
Reynolds, R.C. Jr. and Bailey, S.W., (1988) Mixed layer chlorite minerals Phyllosilicates (Exclusive of Micas) Washington, D.C. Mineralogical Society of America 601629 10.1515/9781501508998-020.Google Scholar
Reynolds, R.C. Jr., Reynolds, R.C. Jr. and Walker, J.R., (1993) Three dimensional X-ray powder diffraction from disordered illite: simulation and interpretation of the diffraction patterns Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals Boulder, Colorado Clay Minerals Society 43 78.Google Scholar
Robinson, D. Warr, L.N. and Bevins, R.E., (1990) The illite ‘crystallinity’ technique: a critical appraisal of its precision Journal of Metamorphic Geology 8 333344 10.1111/j.1525-1314.1990.tb00476.x.Google Scholar
Ruiz Cruz, M.D. and Moreno Real, L., (1993) Diagenetic kaolinite/dickite (Betic Cordilleras, Spain) Clays and Clay Minerals 41 570579 10.1346/CCMN.1993.0410507.Google Scholar
Ryan, P.C. and Reynolds, R.C. Jr., (1996) The origin and diagenesis of grain-coating serpentine-chlorite in Tuscaloosa Formation sandstone, U.S. Gulf Coast American Mineralogist 81 213225 10.2138/am-1996-1-226.Google Scholar
Ryan, P.C. and Reynolds, R.C. Jr., (1996) The origin and diagenesis of grain-coating serpentine-chlorite in Tuscaloosa Formation sandstone, U. S. Gulf Coast American Mineralogist 81 213225 10.2138/am-1996-1-226.Google Scholar
Shutov, V.D. Aleksandrova, A.V. and Losievskaya, S.A., (1970) Genetic interpretation of the polytypism of the kaolinite group in sedimentary rocks Sedimentology 15 6982 10.1111/j.1365-3091.1970.tb00206.x.Google Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C. Mineralogical Society of America 495544 10.1515/9781501508820-016.Google Scholar
Środoń, J. Elsass, F. McHardy, W.J. and Morgan, D.J., (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.Google Scholar
Sweet, I.P. Brakel, A.T. and Carson, L., (1999) The Kombolgie Subgroup — a new look at an old ‘formation’ AGSO Research Newsletter 30 26 28.Google Scholar
Velde, B. and Vasseur, G., (1992) Estimation of the diagenetic smectite to illite transformation in time-temperature space American Mineralogist 77 967 976.Google Scholar
Whitney, G., (1990) Role of water in the smectite-to-illite reaction Clays and Clay Minerals 38 343350 10.1346/CCMN.1990.0380402.Google Scholar
Wilde, A.R. Mernagh, T.P. Bloom, M.S. and Hoffmann, C.F., (1989) Fluid inclusion evidence on the origin of some Australian unconformity-related uranium deposits Economic Geology 84 16271642 10.2113/gsecongeo.84.6.1627.Google Scholar