Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T22:53:38.510Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis of Mg-Rich and Mg-Ni-Rich Kaolinite

Published online by Cambridge University Press:  01 January 2024

Maria Bentabol
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
Maria Dolores Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Spain
Francisco Javier Huertas
Affiliation:
Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, 18008 Granada, Spain
Jose Linares
Affiliation:
Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, 18008 Granada, Spain
*
*E-mail address of corresponding author: mdruiz@uma.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mg-rich kaolinite and Mg+Ni-rich kaolinite have been synthesized in hydrothermal experiments (200 and 400°C) from poorly crystalline kaolinite and Mg- and Mg+Ni-bearing solutions. Al-rich serpentine and Al-rich chlorite were obtained as sub-products of the reactions. The formation of these phases occurred through a dissolution-precipitation mechanism that led to spherical kaolinite after short reaction times. A morphological evolution towards platy particles and stacks occurred at increasing run times.

Identification of the several phases was carried out using a combination of X-ray diffraction and transmission/analytical electron microscopy. Analytical data indicate that the Mg content in kaolinite increased as a function of the reaction time and temperature, reaching up to 0.46 atoms per half formula unit (a.p.h.f.u.). The measured (Mg+Ni) content reached up to 0.56 a.p.h.f.u.. Both the gradual increase of the b-cell parameter of kaolinite at increasing Mg contents and the presence of new bands on the FTIR spectra of the synthesized kaolinite point to a Mg-for-Al replacement in the octahedral sheet rather than to the presence of serpentine-like layers interstratified in the kaolinite structure.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Angel, B.R., Richards, K. and Jones, J.P.E. (1975) The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation. Pp. 297304 in: Proceedings of the International Clay Conference, 1975.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1984) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Bailey, S.W. and Bailey, S.W., (1991) Structures and composition of other trioctahedral 1:1 phyllosilicates Hydrous Phyllosilicates (exclusive of micas) Washington, D.C Mineralogical Society of America 169188.Google Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., (2006) Chemical and structural variability of illitic phases formed from kaolinite in hydrothermal conditions Applied Clay Science 32 111124 10.1016/j.clay.2005.12.003.CrossRefGoogle Scholar
Brindley, G.W. Chih-Chun, K. Harrison, J.L. Lipsicas, M. and Raythatha, R., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Brookins, D.G., (1973) Chemical and X-ray investigation of chromiferous kaolinite (‘miloschite’) from the Geysers, Sonoma County, California Clays and Clay Minerals 21 421422 10.1346/CCMN.1973.0210518.CrossRefGoogle Scholar
Cuttler, A.H., (1981) Further studies of ferrous iron doped synthetic kaolinite dosimetry of X-ray induced effects Clay Minerals 16 6980 10.1180/claymin.1981.016.1.05.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, M.A., (1976) Rock Forming Minerals vol. 3—Sheet Silicates Essex, UK Longman 270 pp.Google Scholar
Delineau, T. Allard, T. Muller, J.P. Barrès, O. Yvon, J. and Cases, J.M., (1994) FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays and Clay Minerals 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Drief, A. and Nieto, F., (1999) The effect of dry grinding on the Mulhacén antigorite Clays and Clay Minerals 47 417424 10.1346/CCMN.1999.0470404.CrossRefGoogle Scholar
Farmer, V.C. and Farmer, V.C., (1974) The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.CrossRefGoogle Scholar
Foster, M.D., (1962) Interpretation of the composition and a classification of the chlorites US Geological Survey Professional Paper 414-A 133.Google Scholar
Gaite, J.M. Ermakoff, P. and Muller, J.P., (1997) Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247.Google Scholar
Gillery, F.H., (1959) The X-ray study of synthetic Mg-Al serpentines and chlorites American Mineralogist 44 143152.Google Scholar
González Jesús, J. Huertas, F.J. Linares, J. and Ruiz Cruz, M.D., (2000) Textural and structural transformations of kaolinites in aqueous solutions Applied Clay Science 17 245263 10.1016/S0169-1317(00)00018-1.CrossRefGoogle Scholar
Herbillon, A.J. Mestdagh, M.M. Vielvoye, L. and Derouane, E.G., (1976) Iron in kaolinites with special reference to kaolinite from tropical soils Clay Minerals 11 201220 10.1180/claymin.1976.011.3.03.CrossRefGoogle Scholar
Iriarte, I., (2003) Formación de minerals de la arcilla en el sistema SiO2-Al2O3-Fe2O3-MgO-Na2O-H2O entre 150 y 225°C Spain University of Granada.Google Scholar
Iriarte, I. Petit, S. Huertas, F.J. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., (2005) Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals 53 110 10.1346/CCMN.2005.0530101.CrossRefGoogle Scholar
Jepson, W.B. and Rowse, J.B., (1975) The composition of kaolinite — an electron microscope microprobe study Clays and Clay Minerals 23 310317 10.1346/CCMN.1975.0230407.CrossRefGoogle Scholar
Lorimer, G.W. Cliff, G. and Wenk, H.R., (1976) Analytical electron microscopy of minerals Electron Microscopy in Mineralogy New York Springer-Verlag 506519 10.1007/978-3-642-66196-9_38.CrossRefGoogle Scholar
Maksimovic, Z. and Brindley, G.W., (1980) Hydrothermal alteration of a serpentine near Takovo, Yugoslavia, to Cr-bearing illite/smectite, kaolinite, tosudite and halloysite Clays and Clay Minerals 28 295302 10.1346/CCMN.1980.0280408.CrossRefGoogle Scholar
Maksimovic, Z. White, J.L. and Logar, M., (1981) Chromium bearing kaolinite from Teslic, Yugoslavia Clays and Clay Minerals 29 213218 10.1346/CCMN.1981.0290307.CrossRefGoogle Scholar
Martin, F. Petit, S. Decarreau, A. Ildefonse, P.h. Grauby, O. Beziat, D. Parseval, P. and Noack, Y., (1998) Ga/Al substitution in synthetic kaolinites and smectites Clay Minerals 33 231241 10.1180/000985598545598.CrossRefGoogle Scholar
Meads, R.E. and Malden, P.S., (1975) Electron-spin resonance in natural kaolinites containing Fe3+ and other transition metalions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1980) Iron in kaolinite. II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.CrossRefGoogle Scholar
Millot, G., (1964) Géologie des Argiles Paris Masson 499 pp.Google Scholar
Newman, A.C.D. and Brown, G., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.CrossRefGoogle Scholar
Petit, S. Decarreau, A. Mosser, C. Ehret, G. and Grauby, O., (1995) Hydrothermal synthesis (250°C) of copper-substituted kaolinites Clays and Clay Minerals 43 482494 10.1346/CCMN.1995.0430413.CrossRefGoogle Scholar
Plancon, A. and Zacharie, C., (1990) An expert system for the structural characterization of kaolinites Clay Minerals 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Roy, R. and Osborn, E.F., (1954) The system Al2O3-SiO2-H2O American Mineralogist 39 853885.Google Scholar
Russell, J.D. Fraser, A.R. and Wilson, M.J., (1994) Infrared methods Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 1167 10.1007/978-94-011-0727-3_2.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., (1991) Weathering of a chromian muscovite to kaolinite Clays and Clay Minerals 39 571579 10.1346/CCMN.1991.0390602.CrossRefGoogle Scholar
Stone, W.E.E. and Torres Sánchez, R.M., (1988) Nuclear magnetic resonance spectroscopy applied to minerals. Part 6. Structural iron in kaolinite as viewed by proton magnetic resonance Journal of the Chemical Society, Faraday Transactions 84 117132 10.1039/f19888400117.CrossRefGoogle Scholar
Wicks, F.J. O’Hanley, D.S. and Bailey, S.W., (1991) Serpentine minerals: structures and petrology Hydrous Phyllosilicates (exclusive of micas) Washington, D.C Mineralogical Society of America 91167.Google Scholar