Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T07:19:14.522Z Has data issue: false hasContentIssue false

Hydroxy Interlayers in Expansible Layer Silicates

Published online by Cambridge University Press:  01 July 2024

C. I. Rich*
Affiliation:
Agronomy Department, Virginia Polytechnic Institute, Blacksburg, Virginia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Vermiculites and smectites in soils and sediments are frequently partially interlayered or “chloritized”. Dioctahedral expansible layer silicates are those most frequently interlayered, and hydroxy-Al appears to be the principal component of the non-exchangeable interlayer material.

The most favorable soil conditions for interlayer formation appear to be: moderate pH (4·6–5·8), frequent wetting and drying cycles, and low organic matter content.

In marine sediments, hydroxy-Mg interlayering may be significant. Soil-derived clays containing partially filled hydroxy-Al “brucite” sheets may be filled out with hydroxy-Mg. Under reducing conditions, hydroxy-Fe interlayers may be important.

Depending on the OH/Al ratio and Al content of hydroxy-Al interlayers, expansible layer silicate may either promote or retard the formation of gibbsite. Interlayered expansible layer silicates also may be precursors to kaolinite.

Résumé

Résumé

Les vermiculites et les smectites en sols et sédiments sont souvent partiellement répartis en feuillets interstratifies ou “chlorées”. Les silicates en couches expansibles dioctaédriques sont celles qui sont le plus souvent en feuillets interstratifies et l’hydroxy-Al apparaît être le principal composant du matériau non-interchangeable de la feuillet interstratifie.

Les conditions du sol les plus favorables pour la formation de feuillets interstratifies semblent être: un pH 4,6–5,8 modéré, de fréquents cycles d’humidité et de sècheresse, et une faible teneur en matière organique.

Dans les sédiments marins, une feuillet interstratifie d’hydroxy-Mg peut être importante. Des argiles dérivées du sol contenant des feuillets de “brucite” partiellement remplies d’hydroxy-Al peuvent être remplies d’hydroxy-Mg. Dans certains conditions, les feuillets interstratifies d’hydroxy-Fe peuvent être importantes.

Selon le rapport OH/Al et la teneur en Al’dhydroxo-Al des feuillets interstratifies, le silicate de la feuillet expansible peut soit activer, soit retarder la formation de gibbsite. Les silicates en feuillets interstratifies de la feuillet expansible peuvent aussi être les précurseurs de kaolinite.

Kurzreferat

Kurzreferat

Vermiculite und Seifensteine in Böden und Ablagerungen sind häufig teilweise mit Zwischenschichten versehen oder “chlotitisiert”. Am häufigsten kommen Zwischenschichten in den dioktahedralen Silikaten mit Quellschichten vor und der Hauptbestandteil des nicht-austauschbaren Zwischenschichtmaterials scheint Hydroxy-Aluminium zu sein.

Die günstigsten Bodenbedingungen für die Bildung von Zwischenschiehten sind scheinbar die folgenden: mässiges pH 5,6–5,8, häufige Nass-und Trockenzyklen, und niedriger Gehalt an organischem Material.

In Meeresablagerungen kann eine bedeutende Zwischenlagerung von Hydroxy-Magnesium vorkommen. Aus dem Boden stammende Tone, die teilweise gefüllte Hydroxy-Aluminium “Brucit” Schichten enthalten, können durch Hydroxy-Mg ausgefüllt werden. Unter Reduktionsbedingungen können Hydroxy-Fe Zwischenschichten von Bedeutung sein.

Je nach dem OH/Al Verhältnis und dem Al Gehalt der Hydroxy-Al Zwischenschichten können Silikate mit Quellschichten die Bildung von Gibbsit entweder fördern oder verzögern. Silikat-Quellschichten mit Zwischenschichten können auch Vorläufer von Kaolinit sein.

Резюме

Резюме

В грунтах и отложениях вермикулиты и смектиты обычно переслогны частично или-же подвергнуты хлоритизации. Диоктаздрииеские расширяемые слоистые силикаты чаше всего переслоены и главной составляющей необменного прослоенного материала является гидрокси-Аl.

Наиболее благоприятные грунтовые условия для образования прослойков вероятно: умеренное рН (4,6-5,8), частые циклы смачивания и сушки и малое содержание органических веществ.

В морских отложениях, прослаивание гидрокси-Мg может оказаться значительным. Полученные из грунта глины содержат слои брусита, частично наполненные гидрокси-А1, которые могут быть выполнены гидрокси-Мg. В восстановительных условиях важными могут оказаться прослойки гидрокси-Ре.

В зависимости от отношения ОН/Аl и от содержания в прослойках гидрокси-Аl, расширяемые слоистые силикаты активируют или замедляют образованиг гибсита. Прослоенные расширяемые слоистые силикаты могут также являться предшественниками каолинита.

Type
Research Article
Copyright
Copyright © 1968, The Clay Minerals Society

Footnotes

*

An invited paper presented at the 16th Clay Minerals Conference, Denver, Colorado.

References

Altschuler, Z. S., Dwornik, E. J. and Kramer, H. (1963) Transformation of montmorillonite to kaolinite during weathering: Science 141, 148152.CrossRefGoogle ScholarPubMed
Aveston, J. (1965) Hydrolysis of the aluminum ion: Ultracentrifugation and acidity measurements: J. Chem. Soc. 44384443.CrossRefGoogle Scholar
Bailey, S. W. (1966) The status of clay mineral structures: Clays and Clay Minerals, Pergamon Press, New York, 14, 123.Google Scholar
Bailey, S. W. and Tyler, S. A. (1960) Clay minerals associated with the Lake Superior iron ores: Econ. Geol. 55, 150175.CrossRefGoogle Scholar
Bailey, S. W. and Brown, B. E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer structures: AM. Mineralogist 47, 819850.Google Scholar
Barnhisel, R. I. (1964) The Formation and Stability of Aluminum Interlayers in Clays: Unpublished Ph.D. Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia .Google Scholar
Barnhisel, R. I. and Rich, C. I. (1963) Gibbsite formation from aluminum interlayers: Soil Sci. Soc. Am. Proc. 27, 632635.CrossRefGoogle Scholar
Barnhisel, R. I. and Rich, C. I. (1965) Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces: Soil Sci. Soc. Am. Proc. 29 531534.Google Scholar
Barnhisel, R. I. and Rich, C. I. (1966) Preferential hydroxyaluminum interlayering in montmorillonite and vermiculite: Soil Sci. Soc. Am. Proc. 30, 3539.CrossRefGoogle Scholar
Barshad, I. (1960) The effect of the total chemical composition and crystal structure of soil minerals on the nature of exchangeable cations in acidified clays and in naturally occurring acid soils: Trans. 7th Intern. Congr. Soil Sci. 2, 435444.Google Scholar
Biscaye, P. E. (1964) Mineralogy and sedimentation of the deep-sea sediment fine fraction in the Atlantic Ocean and adjacent seas and oceans: Geochemistry Tech. Report 8, Yale University, Dept. of Geology. 65 pp.Google Scholar
Bradley, W. F. (1953) Analysis of mixed-layer clay mineral structures: A nal. Chem. 25, 727730.CrossRefGoogle Scholar
Brown, C. Q. and Ingram, R. L. (1954) The clay minerals of the Neuse River sediments: J. Sediment Petrol 24, 196199.CrossRefGoogle Scholar
Brown, G. (1953) The dioctahedral analogue of vermiculite: Clay Min. Bull. 2, 6469.CrossRefGoogle Scholar
Brown, G. (1954) Soil morphology and mineralogy. A qualitative study of some gleyed soils from North-West England: J. Soil Sci. 5, 145155.CrossRefGoogle Scholar
Bryant, J. P. and Dixon, J. B. (1964) Clay mineralogy and weathering of a Red-Yellow Podzolic soil from quartz mica schist in the Alabama Piedmont: Clays and Clay Minerals, Pergamon Press, New York, 12, 509521.Google Scholar
Brydon, J. E., Clark, J. S. and Osborne, V. (1961) Dioctahedral Chlorite: Can. Mineralogist 6, 595609.Google Scholar
Brydon, J. E. and Kodama, H. (1966) The nature of aluminum hydroxide montmorillonite complexes: Am. Mineralogist 51, 875888.Google Scholar
Caillère, S. and Hénin, S. (1949) Formation of chlorite from montmorillonite: Mineral. Mag. 28, 612620.Google Scholar
Caillère, S. and Hénin, S. (1950) Mécanisme d’évolutions des minéraux phylliteaux: Trans. 4th Intern. Congr. Soil Sci. 1, 9698.Google Scholar
Carstea, D. D. (1965) Conditions of Al, Fe, and Mg Interlayer Formation in Montmorillonite and Vermiculite: Master of Science thesis, Oregon State University, Corvallis, Oregon .Google Scholar
Carstea, D. D. (1967) Formation and Stability of Al Fe, and Mg Interlayers in Montmorillonite and Vermiculite. Unpublished Ph.D. thesis, Oregon State University, Corvallis, Oregon . 117 pp.Google Scholar
Clark, J. S. (1964a) Aluminum and iron fixation in relation to exchangeable hydrogen in soils: Soil Sci. 98, 302306.CrossRefGoogle Scholar
Clark, J. S. (1964fe) Some cation-exchange properties of soils containing free oxides: Can. J. Soil Sci. 44, 203211.CrossRefGoogle Scholar
Clark, J. S., Brydon, J. E. and Farstad, L. (1963) Chemical and clay mineralogical properties of the Concretionary Brown Soils of British Columbia, Canada: Soil Sci. 95, 344352.CrossRefGoogle Scholar
Clark, J. S. and Nichol, (1965) The lime potential-percent base saturation relations of acid surface horizons of mineral and organic soils: Can. J. Soil Sci. 46, 281285.CrossRefGoogle Scholar
Coleman, N. T., Ragland, J. L. and Craig, D. (1960) An unexpected reaction between Al-Clay or Al-Soil CaCl2: Soil Sci. Soc. Am. Proc. 24, 419420.CrossRefGoogle Scholar
Coleman, N. T. (1962) Decomposition of clays and the fate of aluminum: Econ. Geol. 57, 12071218.CrossRefGoogle Scholar
Coleman, N. T. and Thomas, G. W. (1964) Bulfer curves of acid clays as affected by the presence of ferric iron and aluminum: Soil Sci. Soc. Am. Proc. 28, 187190.CrossRefGoogle Scholar
Coleman, N. T., Thomas, G. W., Le Roux, F. H. and Bredell, G. (1964) Salt exchangeable and titratable acidity in bentonite-sequioxide mixtures: Soil Sci. Soc. Am. Proc. 28, 3537.CrossRefGoogle Scholar
Cotton, S. B. (1965) Hydrolysis of Aluminum in Synthetic Cation Exchange Resins and Dioctahedral Vermiculite·. Unpublished Ph.D thesis, Virginia Polytechnic Institute, Blacksburg, Virginia . 200 pp.Google Scholar
De Villiers, J. M. and Jackson, M. L. (1967) Cation exchange capacity variations with pH in soil clays: Soil Sci. Soc. Am. Proc. 31, 473477.CrossRefGoogle Scholar
Dion, H. G. (1944) Iron oxide removal from clays and its influence on the base-exchange properties and X-ray diffraction pattern of clays: Soil Sci. 58, 411424.CrossRefGoogle Scholar
Dixon, J. V. and Jackson, M. L (1959) Dissolution of interlayers from intergradient soil clays after preheating at 400°C: Science 129, 16161617.CrossRefGoogle Scholar
Dixon, J. V. and Jackson, M. L. (1960) Mineralogical analysis of soil clays involving vermiculite-chlorite- kaolinite differentiation: Clays and Clay Minerals, Pergamon Press, New York, 8, 274286.CrossRefGoogle Scholar
Dixon, J. V. and Jackson, M. L. (1962) Properties of intergradient chlorite-expansible layer silicates of soils: Soil Sci. Soc. Am. Proc. 26, 358362.CrossRefGoogle Scholar
Douglas, L. A. (1965) Clay mineralogy of a Sassafras soil in New Jersey: Soil Sci. Soc. Am. Proc. 29, 163167.CrossRefGoogle Scholar
Droste, J. V. (1956) Alteration of clay minerals by weathering in Wisconsin tills; Bull. Geol. Soc. Am. 67, 911918.CrossRefGoogle Scholar
Eggleton, R. A. and Bailey, S. W. (1967) Structural aspects of dioctahedral chlorite: Am. Mineralogist 52. 673689.Google Scholar
Frink, C. R. (1965) Characterization of aluminum interlayers in soil clays: Soil Sci. Soc. Am. Proc. 29, 379382.CrossRefGoogle Scholar
Frink, C. R. and Peech, M. (1963) Hydrolysis and exchange reactions of the aluminum ion in hectorite and montmorillonite suspensions: Soil Sci. Soc. Am. Proc. 27, 527530.CrossRefGoogle Scholar
Fripiat, J. J., Chaussidon, J. and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by infrared spectroscopy: J. Phys. Chem. 64, 12341241.CrossRefGoogle Scholar
Fripiat, J.J., Van Cauwelaert, F. and Bosmans, H. (1965) Structure of aluminum cations in aqueous solutions: J. Phys. Chem. 69, 24582461.CrossRefGoogle Scholar
Gastuche, M. C. and Herbillon, A. (1962) Etude des gels d'alumine: Crystallisation in milieu desione: Bull. Soc. Chim., France, 14021412.Google Scholar
Girod, J. and Lacroix, J. (1960) Influence de l'acidite’ sur les movements de ľ aluminium dans un mélange d'argiles: C. R. Acad. Sci., Paris, 250, 41824183.Google Scholar
Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: Clays and Clay Minerals Natl. Acad. Sci., Natl. Res. Council Publ. 566, 227241.Google Scholar
Glenn, R. C. (1960) Chemical weathering of layer silicate minerals in loess-derived Loring silt loam of Mississippi: Trans. 7th Intern. Congr. Soil Sci. 7, 523532.Google Scholar
Glenn, R. C., Jackson, M. L., Hole, F. D. and Lee, G. B. (1960) Chemical weathering of layer silicate clays in loess-derived Tama silt loam of southwestern Wisconsin: Clays and Clay Minerals, Pergamon Press, New York, 8, 6383.CrossRefGoogle Scholar
Glenn, R. C. and Nash, V. E. (1964) Weathering relationships between gibbsite, kaolinite, chlorite, and expansible layer silicates in selected soils from the lower Miss. Coastal Plain: Clays and Clay Minerals, Pergamon Press, New York, 12, 529548.Google Scholar
Griffin, M. and Ingram, R. L. (1955) Clay minerals of the Neuse River estuary: J. Sediment. Petrol. 25, 194200.CrossRefGoogle Scholar
Grim, R. E. and Johns, W. D. (1954) Clay mineral investigation of sediments in the northern Gulf of Mexico: Clays and Clay Minerals, Natl. Acad. Sci. —Natl. Res. Council Publ. 327, 81103.Google Scholar
Grim, R. E. and Loughnan, F. C. (1962) Clay minerals in sediments from Sydney Harbour, Australia: J. Sediment. Petrol. 32, 240248.Google Scholar
Hathaway, John C. (1955) Studies on some vermiculite- type clay minerals: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council. Publ. 395, 7486.Google Scholar
Hayashi, H. and Oinuma, (1964) Aluminian chlorite from Kamikita mine, Japan: Clay Sci. News Ed. 2, 2230.Google Scholar
Hsu, Pa. Ho. (1966) Formation of gibbsite from aging hydroxy-aluminum solutions: Soil Sci. Soc. Am. Proc. 30, 173176.CrossRefGoogle Scholar
Hsu, Pa Ho and Rich, C. I. (1960) Aluminum fixation in a synthetic cation exchanges: Soil Sci. Soc. Am. Proc. 24, 2125.CrossRefGoogle Scholar
Hsu, Pa Ho and Bates, T. F. (1964a) Fixation of hydroxy- aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763969.CrossRefGoogle Scholar
Hsu, Pa Ho and Bates, T. F. (1964ft) Formation of X-ray amorphous and crystalline aluminum hydroxides: Mineral. Mag. 33, 749768.Google Scholar
Huang, P. M. and Jackson, M. L. (1966) Fluoride interaction with clays in relation to third buffer range: Nature 211, 779780.CrossRefGoogle Scholar
Jackson, M. L. (1959) Frequency distribution of clay minerals in major great soil groups as related to the factors of soil formation: Clays and Clay Minerals, Pergamon Press, New York, 6, 133143.Google Scholar
Jackson, M. L. (1960) Structural role of hydronium in layer silicates during soil genesis: Trans. 7th Int. Congr. Soil Sci. 2, 445455.Google Scholar
Jackson, M. L. (1963a) Interlayering of expansible layer silicates in soils by chemical weathering: Clays and Clay Minerals, Pergamon Press, New York, 11, 2946.Google Scholar
Jackson, M. L. (1963J) Aluminum bonding in soils: A unifying principle in soil science: Soil Sci. Soc. Am. Proc. 27, 110.CrossRefGoogle Scholar
Jackson, M. L. (1965) Clay transformation in soil genesis during the Quaternary: Soil Sci. 99, 1522.CrossRefGoogle Scholar
Jackson, M. L., Whittig, L. D., Vanden Heuvel, R. C., Kaufman, A. and Brown, B. E. (1954) Some analyses of soil montmorin, vermiculite, mica, chlorite and interstratified layer silicates: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 218240.Google Scholar
Jeffries, C. D., Rolfe, B. N. and Kunze, G. W. (1953) Mica weathering sequence in the Highfield and Chester soil profiles: Soil Sci. Soc. Am. Proc. 17, 337339.CrossRefGoogle Scholar
Johnson, L. G. and Jeffries, C. D. (1957) The effect of drainage on the weathering of the clay minerals in the Allenwood Catena of Pennsylvania: Soil Sci. Soc. Am. Proc. 21, 539542.CrossRefGoogle Scholar
Jones, L. H. P., Milne, A. A. and Attiwill, P. M. (1964) Dioctahedral vermiculite and chlorite in highly weathered red loams in Victoria Australia: Soil Sci. Soc. Am. Proc. 28, 108113.CrossRefGoogle Scholar
Kaddah, M. and Coleman, N. T. (1967) Salt displacement of acid-treated trioctahedral vermiculites: Soil Sci. Soc. Am. Proc. 31, 333336.CrossRefGoogle Scholar
Kawasaki, H. and Aomine, S. (1964) Influence of pH on the formation of the hydroxy-Al-montmorillonite complex: Soil Sci. Plant Nutr. 10, 117183.CrossRefGoogle Scholar
Kawaski, H. and Aomine, S. (1965) Hydroxy-Al complexes of montmorillonite and vermiculite and identification of intergrades of montmorillonite-chlorite and vermiculite-chlorite: Soil Sci. Plant Nutr. 11, 2429.CrossRefGoogle Scholar
Klages, M. G. and White, J. L. (1957) A chlorite-like mineral in Indiana soils: Soil Sci. Soc. Am. Proc. 21, 1620.CrossRefGoogle Scholar
Koizumi, M. and Roy, R. (1959) Synthetic montmorillonoids with variable exchange capacity: Am. Mineralogist 44, 788805.Google Scholar
Krebs, R. D. and Tedrow, J. C. F. (1957) Genesis of three soils derived from Wisconsin till in New Jersey: Soil Sci. 83, 207218.CrossRefGoogle Scholar
Kuron, H., Preuse, U. A. and Föhrenbacker, H. U. (1961) Kolloid-chemische und tonmineralogische Untersuchungen an zwei Profilen der Wesermarsch: Z. Pflanzenernähr. Düng. Boden. 92, 233247.CrossRefGoogle Scholar
Leith, C. J. and Craig, R. M. (1965) Mineralogic trends induced by deep residual weathering: Am. Mineralogist 50, 19571970.Google Scholar
Le Roux, J. and de Villiers, J. M. (1965) The contribution of hydronium and aluminum ions to acidity in some Natal soils: S. Afr. J. Agri. Sci. 8, 10791090.Google Scholar
Longeut-Escard, J. (1950) Fixation des hydroxydes par la montmorillonite: Trans 4th Intern. Congr. Soil Sci. 3, 4044.Google Scholar
Loughnan, F. C., Grim, R. D. and Vernet, J. (1962) Weathering of some Triassic shales in the Sydney area: J. Geol. Soc. Australia 8, 245257.CrossRefGoogle Scholar
Lynn, W. C. and Whittig, L. D., (1966) Alternation and formation of clay minerals during cat clay formation: Clays and Clay Minerals, Pergamon Press, New York, 14, 241248.CrossRefGoogle Scholar
MacEwan, D. M. C. (1950) Some notes on the recording and interpretation of X-ray diagrams of soil clays: J. Soil Sci. 1, 90103.CrossRefGoogle Scholar
Mathieson, A. M. and Walker, G. F. (1954) Crystal structure of mangesium-vermiculite: Am. Mineralogist 39, 231255.Google Scholar
Matsui, T. and Totani, M. (1963) Studies on some functions of vermiculite clay separates from Japanese soils: Clay Sci. 1, 155166.Google Scholar
Müller, G. (1961) Vorläufige Mulleilung über ein neues dioktaedrisches Phyllosilikat der Chlorite-Gruppe: Neues Jahrb. Mineral. Monatsh., 112120.Google Scholar
Müller, G. (1963) Zur Kenntnis dioktaedriser Vierschict- phyllosilikate (Sudoit-Reihe der Sudoit-Chlorit- Gruppe): Proc. Intern. Clay Conf., Stockholm, Pergamon Press, New York, 121130.Google Scholar
Nash, V. E. (1963) Chemical and mineralogical property of an Orangeburg profile: Soil Sci. Soc. Am. Proc. 27, 688693.CrossRefGoogle Scholar
Nelson, V. W. (1960) Clay mineralogy of the bottom sediments, Rappahannock River, Virginia: Clays and Clay Minerals, Pergamon Press, New York, 7, 135147.Google Scholar
Nelson, B. S. (1963) Clay mineral diagenesis in the Rappahennock estuary: an explanation: Clays and Clay Minerals, Pergamon Press, New York, 11, p. 210.Google Scholar
Page, A. L. and Whittig, L. D. (1961) Iron absorption by montmorillonite systems: II. Determination of adsorbed iron: Soil Sci. Soc. Am. Proc. 25, 282286.CrossRefGoogle Scholar
Paver, H. and Marshall, S. E. (1934) The role of aluminum in the reactions of the clays: J. Soc. Chem. Ind. 53, 750760.Google Scholar
Puwluk, S. (1963) Characteristics of 14 A clay minerals in the V horizons of podzolized soils of Alberta: Clays and Clay Minerals, Pergamon Press, New York, 11, 7482.Google Scholar
Pearson, R. W. and Ensminger, L. E. (1949) Types of clay minerals in Alabama soils: Soil Sci. Soc. Am. Proc. 13, 153156.CrossRefGoogle Scholar
Poncelet, G. M. and Brindley, G. W. (1967) Experimental formation of kaolinite from montmorillonite at low temperatures: Am. Mineralogist 52, 11611173.Google Scholar
Post, D. F. and White, J. L. (1967) Clay mineralogy and mica-vermiculite layer charge density distribution in the Switzerland soils of Indiana: Soil Sci. Soc. Am. Proc. 31, 419424.CrossRefGoogle Scholar
Powers, M. C. (1954) Clay diagenesis in the Chesapeake Bay area: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 327, 6880.Google Scholar
Powers, M. C. (1959) Adjustment of clays to chemical change and the concept of the equivalence level: Clays and Clay Minerals, Pergamon Press, New York, 6, 4260.Google Scholar
Quigley, F. M. and Martin, R. T. (1963) Chloritized weathering products of a New England glacial till: Clays and Clay Minerals, Pergamon Press, New York, 10, 107116.Google Scholar
Ragland, J. L. and Coleman, N. T. (1960) The hydrolysis of aluminum salts in clay and soil systems: Soil Sci. Soc. Am. Proc. 24, 457460.CrossRefGoogle Scholar
Reuter, G. and Menning, P. (1964) Tonminerale in Staunässeboden Wissenschaftliche: Z. Universitat Rostoch, Math-Nat. Reihe. 4, 573582.Google Scholar
Reuter, G. and Menning, P. (1965) Ergebnisse der Differentialthermoalyse bei der Untersuchung von Staunässeböden auf Jungpleistozänanen Sedimenten: First Intern. Thermal Analysis Conf., Aberdeen, Scotland, 232233.Google Scholar
Rich, S. I. (1954) Clay minerals in Tatum silt loam soil: Virginia J. Sci. 5, p. 300.Google Scholar
Rich, S. I. (1960a) Aluminum in interlayers of vermiculite: Soil Sci. Soc. Am. Proc. 24, 2632.CrossRefGoogle Scholar
Rich, S. I. (1960ft) Ammonium fixation by two Red- Yellow Podzolic soils as influenced by interlayer-Al in clay minerals: Trans. 7th Int. Congr. Soil Sci. 4, 468475.Google Scholar
Rich, S. I. (1962) Removal of excess salt in cation exchange capacity determinations: Soil Sci. 93, 8794.CrossRefGoogle Scholar
Rich, S. I. (1966) Concentration of dioctahedral mica and vermiculite using a fluoride solution: Clays and Clay Minerals, Pergamon Press, New York, 14, 9198.CrossRefGoogle Scholar
Rich, S. I. and Obenshain, S. S. (1955) Chemical and clay mineral properties of a Red-Yellow Podzolic soil derived from muscovite schist: Soil Sci. Soc. Am. Proc. 19, 334–331.CrossRefGoogle Scholar
Rich, S. I. and Cook, M. G. (1963) Formation of dioctahedral vermiculite in Virginia soils: Clays and Clay Minerals, Pergamon Press, New York, 10, 96106.Google Scholar
Rich, S. I. and Black, W. R. (1964) Potassium exchange as affected by cation size, pH, and mineral structure: Soil Sci. 97, 384390.CrossRefGoogle Scholar
Sand, L. B. (1956) On the genesis of residual kaolins: Am. Mineralogist 41, 2840.Google Scholar
Sawhney, B. L. (1960a) Aluminum interlayers in clay minerals, montmorillonite and vermiculite: laboratory synthesis: Nature 187, 261262.CrossRefGoogle Scholar
Sawhney, B. L. (1960ft) Weathering and aluminum interlayers in a soil catena: Hollis-Charlton-Sutton-Leicester. Soil Sci. Soc. Am. Proc. 24, 221226.CrossRefGoogle Scholar
Sawhney, B. L. (1960c) Aluminum interlayers in clay: Trans. 7th Int. Congr. Soil Sci. 4, 476481.Google Scholar
Sayegh, A. H., Harward, M. E. and Knox, E. G. (1965) Humidity and temperature interactions with respect to K-saturated expanding clay minerals: Am. Mineralogist 50, 490495.Google Scholar
Scheffer, F., Meyer, V. and Tölster, U. H. (1961) Dreischicht-Tonminerale mit Aluminum Zwischenschichtbelegung in mitteldeutschen sauren Braunen Waldböden: Z. Pflanzenerähr., Düng., Bodenk. 92, 201207.CrossRefGoogle Scholar
Schofield, R. K. (1946) Factors influencing ion exchange in soils: Soils and Fertilizers 9, 265.Google Scholar
Schwertmann, U. (1961) Der Mineralbestand der Fraktion < 2μ einiger Böden aus Sedimenten und seine Eigenschaften: Z. Pflanzenernähr., Düng., Bodenk. 95, 209227.CrossRefGoogle Scholar
Schwertmann, U. and Jackson, M. L. (1963) Hydrogen- aluminum clays: a third buffer range appearing in Potentiometric titration: Science 139, 10521053.CrossRefGoogle Scholar
Schwertmann, U. and Jackson, M. L. (1964) Influence of hydroxy aluminum ions on pH titration curves of hydronium-aluminum clays: Soil Sci. Soc. Am. Proc. 28, 179183.CrossRefGoogle Scholar
Shen, Mu Ju and Rich, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Am. Proc. 26, 3336.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W. (1966) Crystal structure of a two-layer Mg-vermiculite: Am. Mineralogist 51, 11241143.Google Scholar
Singleton, P. G. (1965) Nature of interlayer materials in silicate clays of selected Oregon soils: Ph.D. thesis, Oregon State University, Corvallis, Oregon .Google Scholar
Slaughter, M. and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: Clays and Clay Minerals, Pergamon Press, New York, 7, 114124.Google Scholar
Spyridokis, D. E., Chesters, G. and Wilde, S. A. (1967) Kaolinization of biotite as a result of coniferous seedling growth: Soil Sci. Soc. Am. Proc. 31, 203209.CrossRefGoogle Scholar
Stephen, I. (1952) A study of rock weathering with reference to the soils of the Malvern Hills II. Weathering of appinite and “ivy-scar rock”: J. Soil Sci. 3, 219237.CrossRefGoogle Scholar
Stephen, I. and MacEwan, D. M. C. (1951) Somechloritic clay minerals of unusual type: Clay Minerals Bull. 1, 157162.CrossRefGoogle Scholar
Sudo, Toshio (1963) Interstratified minerals from Japan, their geological behaviors and origins: Proc. Intern. Clay Conf, Stockholm, Pergamon Press, New York, 113120.Google Scholar
Sudo, T. and Hayaski, H. (1956) Types of mixed-layer minerals from Japan: Clays and Clay Minerals, Natl. Acad. Sci. Natl. Res. Council Publ. 456, 389412.Google Scholar
Tamura, T. (1956) Weathering of mixed layer clays in soils: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 456, 413422.Google Scholar
Tamura, T. (1957) Identification of the 14A clay mineral component: Am. Mineralogist 42, 107110.Google Scholar
Tamura, T. (1958) Identification of clay minerals from acid soils: J. Soil Sci. 9, 141147.CrossRefGoogle Scholar
Tamura, T., Hanna, R. M. and Shearin, A. E. (1959) Properties of Brown Podzolic soils: Soil Sci. 87, 189197.CrossRefGoogle Scholar
Thomas, G. W. (1960) Forms of aluminum in cation exchangers: Trans. 7th Intern. Congr. Soil Sci. 2, 364369.Google Scholar
Treadwell, W. D. (1931) Uber ein basiches Aluminum-chlorid: Eelv Chim. Acta 14, 473481.CrossRefGoogle Scholar
Turner, R. C. (1965) A study of the lime potential 4. The lime potential during titration of Wyoming bentonite originally saturated with ferric ions: Soil Sci. 99, 8892.CrossRefGoogle Scholar
Turner, R. C., Nichol, W. E. and Brydon, J. E. (1963) A study of the lime potential 3: Soil Sci. 95, 186191.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E. (1965) Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite: Soil Sci. 100, 176181.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E. (1967) Effect of length of time of reaction on some properties of suspensions of Arizona bentonite, illite, and kaolinite in which aluminum hydroxide is precipitated: Soil Sci. 103, 111117.CrossRefGoogle Scholar
Van der Marel, H. W. (1964) Identification of chlorite and chlorite-related minerals in sediments: Beitn. Miner. Petrog. 9, 462480.Google Scholar
Volk, V. V. and Jackson, M. L. (1964) Inorganic pH dependent cation exchange charge in soils: Clays and Clay Minerals, Pergamon Press, New York, 12, 218295.Google Scholar
Weed, S. V. and Nelson, L. A. (1962) Occurrence of chlorite-like intergrade clay minerals in Coastal Plain, Piedmont and mountain soils of North Carolina: Soil Sci. Soc. Am. Proc. 26, 393398.CrossRefGoogle Scholar
Weiss, A. (1963) Mica-type layer silicates with alkylamonium ions: Clays and Clay Minerals, Pergamon Press, New York, 10, 191224.Google Scholar
Weiss, Armin, Härbich, A. and Weiss, Alarich (1964) Einige Eigenshaften der 1. bis 4. Wasserschicht in guellungs-fähigen Schichtsilikaten: Ber. Deut. Keram. Ges. 41, 687690.Google Scholar
Weissmiller, R. A., Ahlrichs, J. L. and White, J. L. (1967) Infrared studies of hydroxy aluminum interlayer material. Soil Sci. Soc. Am. Proc. 31, 459463.CrossRefGoogle Scholar
Whitehouse, V. G. and McCarter, R. S. (1958) Diagenetic modification of clay mineral types in artificial sea water: Clays and Clay Minerals, Natl. Acad. Sci., Natl. Res. Council Publ. 566, 81119.Google Scholar
Whittig, L. D. (1959) Characteristics and genesis of a Solodized-Solonetz of California: Soil Sci. Soc. Am. Proc. 23, 469473.CrossRefGoogle Scholar
Wilson, M. J. (1966) The weathering of biotite in some Aberdeenshire soils: Mineral. Mag. 35, 10801093.Google Scholar