Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T11:38:48.935Z Has data issue: false hasContentIssue false

Influence of Gibbsite Surface Area and Citrate on Ni Sorption Mechanisms at pH 7.5

Published online by Cambridge University Press:  01 January 2024

Noriko U. Yamaguchi*
Affiliation:
Department of Quantum Engineering and Systems Science, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo, 113-8656, Japan
Andreas C. Scheinost
Affiliation:
Institute of Terrestrial Ecology, ETHZ, 8952 Schlieren, Switzerland
Donald L. Sparks
Affiliation:
Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303, USA
*
*E-mail address of corresponding author: n-yamaguchi@q.t.u-tokyo.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the sorption of Ni to gibbsite of two different surface areas at pH 7.5, in the presence and absence of citrate, over a time period of 180 days. Extended X-ray absorption fine-structure spectroscopy was employed to elucidate the sorption mechanisms at the molecular level. In agreement with former results, Ni-Al layered double hydroxide (LDH) formed in the presence of gibbsite of low surface area. However, gibbsite of high surface area suppressed the formation of the surface precipitate. Instead, two Al atoms neighboring Ni at distances of 2.95–2.98 Å indicated formation of an inner-sphere sorption complex, where each NiO6-octahedron shares edges with two AlO6-octahedra. Focused multiple scattering arising from Al atoms at a distance of 6 Å suggest that sorbed Ni(OH)2(OH2)4 monomers epitaxially extend the hexagonal arrangement of Al atoms in gibbsite. Only after 30 days or more was a small amount of LDH formed. The presence of citrate prevented the formation of LDH, while maintaining the formation of inner-sphere sorption complexes.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Alcacio, T.E. Hesterberg, D. Chou, J.W. Martin, J.D. Beauchemin, S. and Sayers, D.E., (2001) Molecular scale characteristics of Cu(II) bonding in goethite-humate complexes Geochimica et Cosmochimica Acta 65 13551366 10.1016/S0016-7037(01)00546-4.CrossRefGoogle Scholar
Bargar, J.R. Brown, G.E. Jr. and Parks, G.A., (1998) Surface complexation of Pb(II) at oxide-water interfaces: III. XAFS determination of Pb(II) and Pb(II)-chloro adsorption complexes on goethite and alumina Geochimica et Cosmochimica Acta 62 193207 10.1016/S0016-7037(97)00334-7.CrossRefGoogle Scholar
Bargar, J.R. Persson, P. and Brown, G.E. Jr., (1999) Outersphere adsorption of Pb(II)EDTA on goethite Geochimica et Cosmochimica Acta 63 29572969 10.1016/S0016-7037(99)00264-1.CrossRefGoogle Scholar
Bruemmer, G.W. Gerth, J. and Tiller, K.G., (1988) Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals Journal of Soil Science 39 3752 10.1111/j.1365-2389.1988.tb01192.x.CrossRefGoogle Scholar
Burns, R.G., (1993) Mineralogical Applications of Crystal Field Theory New York Cambridge University Press 10.1017/CBO9780511524899.CrossRefGoogle Scholar
Charlet, L. and Manceau, A., (1994) Evidence for the neoformation of clays upon sorption of Co(II) and Ni(II) on silicates Geochimica et Cosmochimica Acta 58 25772582 10.1016/0016-7037(94)90034-5.CrossRefGoogle Scholar
Fitts, J.P. Persson, P. Brown, G.E. Jr. and Parks, G.A., (1999) Structure and bonding of Cu(II)-glutamate complexes at the gamma-Al2O3-water interface Journal of Colloid and Interface Science 220 133147 10.1006/jcis.1999.6521.CrossRefGoogle Scholar
Ford, R.G. Scheinost, A.C. Scheckel, K.G. and Sparks, D.L., (1999) The link between clay mineral weathering and the stabilization of Ni surface precipitates Environmental Science and Technology 33 31403144 10.1021/es990271d.CrossRefGoogle Scholar
Ford, R.G., Scheinost, A.C. and Sparks, D.L. (2001) Frontiers in Metal Sorption/Precipitation Mechanisms on Soil Mineral Surfaces Pp. 4162 in: Advances in Agronomy, 74, (Sparks, D.L., editor). American Society of Agronomy, Madison, Wisconsin.Google Scholar
Jones, D.L., (1998) Organic acids in the rhizosphere — a critical review Plant and Soil 205 2544 10.1023/A:1004356007312.CrossRefGoogle Scholar
Kraemer, S.M. Chiu, V.Q. and Hering, J.G., (1998) Influence of pH on competitive adsorption on the kinetics of ligand-promoted dissolution of aluminum oxide Environmental Science and Technology 32 28762882 10.1021/es980253g.CrossRefGoogle Scholar
Kyle, J.H. Posner, A.M. and Quirk, J.P., (1975) Kinetics of isotopic exchange of phosphate adsorbed on gibbsite Journal of Soil Science 26 3243 10.1111/j.1365-2389.1975.tb01927.x.CrossRefGoogle Scholar
Lytle, F.W. Greefgor, R.B. Sandstrom, D.R. Marques, E.C. Wong, J. Spiro, C.L. Huffman, G.P. and Huggins, F.E., (1984) Measurement of soft-X-ray absorption spectra with a fluorescence-chamber detector Nuclear Instruments and Methods in Physics Research Section A — Accelerators, Spectrometers, Detectors and Associated Equipment 226 542 548.Google Scholar
Manceau, A. Llorca, S. and Calas, G., (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia Geochimica et Cosmochimica Acta 51 105113 10.1016/0016-7037(87)90011-1.CrossRefGoogle Scholar
Manceau, A. Schlegel, M. Nagy, K.L. and Charlet, L., (1999) Evidence for the formation of trioctahedral clay upon sorption of Co2+ on quartz Journal of Colloid and Interface Science 220 181197 10.1006/jcis.1999.6547.CrossRefGoogle ScholarPubMed
Manceau, A. Schlegel, M.L. Musso, M. Sole, V.A. Gauthier, C. Petit, P.E. and Trolard, F., (2000) Crystal chemistry of trace elements in natural and synthetic goethite Geochimica et Cosmochimica Acta 64 36433661 10.1016/S0016-7037(00)00427-0.CrossRefGoogle Scholar
McBride, M.B., (1985) Influence of glycine on Cu2+ adsorption by microcrystalline gibbsite and boehmite Clays and Clay Minerals 33 397402 10.1346/CCMN.1985.0330504.CrossRefGoogle Scholar
McLaren, R.G. Backes, C.A. Rate, A.W. and Swift, R.S., (1998) Cadmium and cobalt desorption kinetics from soil clays; effect of sorption period Soil Science Society of America Journal 62 332337 10.2136/sssaj1998.03615995006200020006x.CrossRefGoogle Scholar
O’Day, P.A. Brown, G.E. Jr. and Parks, G.A., (1994) X-ray-absorption spectroscopy of cobalt(II) multinuclear surface complexes and surface precipitates on kaolinite Journal of Colloid and Interface Science 165 269289 10.1006/jcis.1994.1230.CrossRefGoogle Scholar
O’Day, P.A. Chisholm-Brause, C.J. Towle, S.N. Parks, G.A. and Brown, G.E. Jr., (1996) X-ray absorption spectroscopy of Co(II) sorption complexes on quartz (alpha-SiO2) and rutile (TiO2) Geochimica et Cosmochimica Acta 60 25152532 10.1016/0016-7037(96)00114-7.CrossRefGoogle Scholar
Ostergren, J.D. Brown, G.E. Jr. Parks, G.A. and Persson, P., (2000) Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH). II. —Sulfate Journal of Colloid and Interface Science 225 483493 10.1006/jcis.1999.6702.CrossRefGoogle Scholar
Ostergren, J.D. Trainor, T.P. Bargar, J.R. Brown, G.E. Jr. and Parks, G.A., (2000) Inorganic ligand effects on Pb(II) sorption to goethite (α-FeOOH) — I. Carbonate Journal of Colloid and Interface Science 225 466482 10.1006/jcis.1999.6701.CrossRefGoogle Scholar
Rehr, J.J. Mustre de Leon, J. Zabinsky, S. and Albers, R.C., (1991) Theoretical X-ray absorption fine-structure standards Journal of the American Chemical Society 113 51355140 10.1021/ja00014a001.CrossRefGoogle Scholar
Ressler, T., (1997) WinXAS: A new software package not only for the analysis of energy-dispersive XAS data Journal de Physique IV 7 269 270.Google Scholar
Saalfeld, H. and Wedde, M., (1974) Refinement of the crystal structure of gibbsite, Al(OH)3 Zeitschrift für Kristallographie 139 129135 10.1524/zkri.1974.139.1-2.129.CrossRefGoogle Scholar
Scheidegger, A.M. Lamble, G.M. and Sparks, D.L., (1997) Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides Journal of Colloid and Interface Science 186 118128 10.1006/jcis.1996.4624.CrossRefGoogle Scholar
Scheidegger, A.M. Strawn, D.G. Lamble, G.M. and Sparks, D.L., (1998) The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: A time-resolved XAFS study Geochimica et Cosmochimica Acta 62 22332245 10.1016/S0016-7037(98)00136-7.CrossRefGoogle Scholar
Scheinost, A.C. and Sparks, D.L., (2000) Formation of layered single- and double-metal hydroxide precipitates at the mineral/water interface: A multiple-scattering XAFS analysis Journal of Colloid and Interface Science 223 167178 10.1006/jcis.1999.6638.CrossRefGoogle ScholarPubMed
Scheinost, A.C. Ford, R.G. and Sparks, D.L., (1999) The role of Al in the formation of secondary Ni precipitates on pyrophyllite, gibbsite, talc, and amorphous silica: A DRS study Geochimica et Cosmochimica Acta 63 31933203 10.1016/S0016-7037(99)00244-6.CrossRefGoogle Scholar
Scheinost, A.C. Abend, S. Pandya, K.I. and Sparks, D.L., (2001) Kinetic controls on Cu and Pb sorption by ferrihydrite Environmental Science and Technology 35 10901096 10.1021/es000107m.CrossRefGoogle Scholar
Scheinost, A.C., Kretzschmar, R., Pfister, S. and Roberts, D.R. (2002) Combining selective sequential extractions, X-ray absorption spectroscopy and principal component analysis for quantitative zinc speciation in soil. Environmental Science and Technology, (in press).CrossRefGoogle Scholar
Schlegel, M. Manceau, A. Chateigner, D. and Charlet, L., (1999) Sorption of metal ions on clay minerals. I. Polarized EXAFS evidence for the adsorption of Co on the edges of hectorite particles Journal of Colloid and Interface Science 215 140158 10.1006/jcis.1999.6253.CrossRefGoogle Scholar
Schulthess, C.P. and Sparks, D.L., (1986) Back titration technique for proton isotherm modeling of oxide surfaces Soil Science Society of America Journal 50 14061411 10.2136/sssaj1986.03615995005000060007x.CrossRefGoogle Scholar
Sparks, D.L. Scheidegger, A.M. Strawn, D.G. Scheckel, K.G., Sparks, D.L. and Grundl, T.J., (1999) Kinetics and mechanisms of metal sorption at the mineral-water interface Mineral-Water Interfacial Reactions. Kinetics and Mechanisms Washington, D.C. American Chemical Society 10.1021/bk-1998-0715 Pp. 108–113.CrossRefGoogle Scholar
Sutheimer, S.H. Maurice, P.A. and Zhou, Q., (1999) Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics American Mineraogist 84 620628 10.2138/am-1999-0415.CrossRefGoogle Scholar
Taylor, R.M., (1984) The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis Clay Minerals 19 591603 10.1180/claymin.1984.019.4.06.CrossRefGoogle Scholar
Yamaguchi, N.U. Scheinost, A.C. and Sparks, D.L., (2001) Surface-induced nickel hydroxide precipitation in the presence of citrate and salicylate Soil Science Society of America Journal 65 729736 10.2136/sssaj2001.653729x.CrossRefGoogle Scholar
Zhou, Z.H. Lin, Y.J. Zhang, H.B. Lin, G.D. and Tsai, K.R., (1997) Syntheses, structures, and spectroscopic properties of nickel(II) citrato complexes, (NH4)2[Ni(Hcit)(H2O)2]22H2O and (NH4)4[Ni(Hcit)2]2H2O Journal of Coordination Chemistry 42 131141 10.1080/00958979708045286.CrossRefGoogle Scholar