Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T00:14:01.723Z Has data issue: false hasContentIssue false

Interpretation of Mössbauer Spectra of Nontronite, Celadonite, and Glauconite

Published online by Cambridge University Press:  02 April 2024

Lydia G. Daynyak
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Moscow, U.S.S.R
V. A. Drits
Affiliation:
Geological Institute of the U.S.S.R. Academy of Sciences, Moscow, U.S.S.R
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new approach to the interpretation of Mössbauer spectra of Fe3+-phyllosilicates having vacant trans-octahedra is based on (1) crystal structure simulation methods that allow for the size and the shape of a Fe3+-octahedron as a function of the nearest surrounding cations; and (2) calculations of electric field gradients (EFG) on Fe3+ in terms of the ionic point-charge model. Calculations were performed by direct summation within the region of radius ≤50 Å. Coordinates for the anions in the coordination octahedra have been assigned to take into account the nearest cationic environment. Atomic coordinates for the rest of the summation volume are those for the average unit cell. EFG calculations for cation combinations responsible for the visible quadrupole splitting Δvis in the spectra of nontronite, “red” muscovite, and celadonite have led to good agreement between Δvis and Δcalc. Computer fitting of the nontronite and celadonite spectra based on EFG calculations for the rest of the possible cation combinations suggests that the distribution of tetrahedral cations in nontronite obeys the Loewenstein rule, and in celadonite, the distribution of R3+ and R2+ over cis-octahedra is predominantly ordered, in agreement with electron diffraction and infrared spectroscopy data. The Mössbauer spectrum of one of the glauconites suggested the presence of celadonite-like and muscovite-like domains in its 2:1 layers.

Резюме

Резюме

Описан новый подход к интерпретации мессбауэровских спектров Ре3+-филлосиликатов с вакантными транс-октаэдрами. Он основан на: (1) применении методов структурного моделирования, позволяющих учитывать размер и форму Ре3+-октаэдра в зависимости от ближайших окружающих катионов; (2) расчетах градиентов электрических полей (ГЭП) на ядре Ре3+ в модели ионных точечных зарядов. Расчеты выполнялись прямым суммированием в области радиусом <50 Å. Координаты анионов координирующего октаэдра задавались в соответствии с ближайшим катионным окружением. В остальной области суммирования использовались координаты атомов усредненной элементарной ячейки.

Расчеты ГЭП для комбинаций катионов, ответственных за видимое квадрупольное расщепление Δвид в спектрах нонтронита, “красного” мусковита и селадонита, привели к хорошему согласию между Δввд и Δрасч. Из разложения спектров нонтронита и селадонита, основанного на расчетах ГЭП для остальных возможных комбинаций, следует, что распределение тетраэдрических катионов в нон-троните подчиняется правилу Левенштейна, а в селадоните распределение катионов E.3+ и K2+ по цис-октаэдрам является преимущественно упорядоченным, что согласуется с электронографическими и ИК-спектроскопическими данными.

Из анализа мессбауэровского спектра одного из глауконитов следует наличие селадонитоподобных и мусковитоподобных доменов в 2:1 слоях его структуры.

Обсуждаются методологические аспекты интерпретации мессбауэровских спектров диоктаэдри-ческих филлосиликатов.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Annersten, H., 1975 A Mössbauer characteristic of ordered glauconite Neues Jahr. Mineral. Monatshefte 8 378384.Google Scholar
Bailey, S. W. and Bailey, S. W., 1966 Status of clay mineral structures Clays and Clay Minerals, Proc. 14th Natl. Conf., Berkeley, California, 1965 New York Pergamon Press 123.Google Scholar
Baur, W. H., 1971 The prediction of bond length variations in silicon-oxygen bond Amer. Mineral. 56 15731599.Google Scholar
Besson, G., Bookin, A. S., Daynyak, L. G., Rautureau, M., Tsipursky, S I T G and Drits, V. A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronite J. Appl. Cryst. 16 374383.CrossRefGoogle Scholar
Bookin, A. S., Drits, V. A., Rozdestvenskaya, I. V., Semenova, T. F. and Tsipursky, S. I., 1982 Comparison of orientation of OH-bonds in layer silicates by diffraction methods and electrostatic calculations Clays & Clay Minerals 30 409414.CrossRefGoogle Scholar
Bookin, A. S. and Smoliar, B. B., 1985 Prediction of cation-oxygen interatomic distances in coordination polyhedra of the 2:1 layer silicates (pyrophyllite, talc and micas without Li and F) Mineralogichesky Zhurnall 5159.Google Scholar
Coey, J. M. D. Chukhrov, F. D. and Zvyagin, B. B., 1984 Cation distribution, Mössbauer spectra, and magnetic properties of ferripyrophyllite Clays & Clay Minerals 32 198204.CrossRefGoogle Scholar
Daynyak, L. G., 1980 Interpretation of Mössbauer spectra of some Fe3+-containing layer silicates on the basis of structural modelling 18.Google Scholar
Daynyak, L. G., Bookin, A. S., Drits, V. A. and Tsipursky, S. I. (1981a) Mössbauer and electron diffraction study of cation distribution in celadonite: Acta Crystallogr. A37 (suppl.), C-362.CrossRefGoogle Scholar
Daynyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. II. Nontronite Kristallografiya 29 304311.Google Scholar
Daynyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. III. Celadonite Kristallografiya 29 312321.Google Scholar
Daynyak, L. G., Daynyak, B. A., Bookin, A. S. and Drits, V. A., 1984 Interpretation of Mössbauer spectra of dioctahedral Fe3+-containing 2:1 layer silicates. I. Computation of electric field gradients on the basis of structural modelling Kristallografiya 29 94100.Google Scholar
Daynyak, L. G., Drits, V. A., Kudryavtsev, D. I., Simanovich, I. M. and Slonimskaya, M. V., 1981 Crystal chemical specificity of trioctahedral smectites—Products of secondary alteration of oceanic and continental basalts Dokl. Akad. Nauk S.S.S.R. 259 14581462.Google Scholar
Donnay, G., Donnay, J. D. H. and Takeda, H., 1964 Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimension Acta Crystallogr. 17 13741381.CrossRefGoogle Scholar
Drits, V. A., 1971 Regularities of crystal chemical structure of trioctahedral micas Epigenesis and its Mineral Indicators 96110.Google Scholar
Drits, V. A., 1975 Structural and crystal chemical peculiarities of layer silicates Crystal Chemistry of Minerals and Problems of Geology 3551.Google Scholar
Drits, V. A., Tsipursky, S. I. and Plançon, A., 1984 Application of a method for the intensity distribution calculations to the electron diffraction structure analysis Izv. Akad. NaukS.S.S.R. Ser. Fiz. 49 17081713.Google Scholar
Eyrish, M. V. and Dvoretchenskaya, A. A., 1976 Study of Fe3+ ions positions and role in the structure of clay min-erals with gamma resonance spectroscopy (change in the condition of Fe3 ions under montmorillonite dehydration and dehydroxylization Geochemistry 4 597606.Google Scholar
Eyrish, M. V. and Dvoretchenskaya, A. A., 1976 Study of Fe3+ ions positions and role in the structure of clay minerals with gamma resonance spectroscopy (the relation to mineral crystal chemistry) Geochemistry 5 748757.Google Scholar
Giese, R. F., 1971 Hydroxyl orientation in muscovite as indicated by electrostatic energy calculation Science 172 263264.CrossRefGoogle Scholar
Goodman, B. A., 1976 The Mössbauer spectrum of a ferrian muscovite and its implications in the assignment of sites in dioctahedral micas Mineral. Mag. 40 513517.CrossRefGoogle Scholar
Goodman, B. A., 1976 The effect of lattice substitutions on the derivation of quantitative site populations from the Mössbauer spectra of 2:1 layer silicates J. Phys. Colloque C6 (Supplement au 12) 819823.CrossRefGoogle Scholar
Goodman, B. A., 1978 The Mössbauer spectra of nontronite: Consideration of an alternative assignment Clays & Clay Minerals 26 176177.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D. and Fraser, A. R., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5359.CrossRefGoogle Scholar
Govaert, A., De Grave, E. and Qurtier, H., 1979 Mössbauer analysis of glauconites of different Belgian finding places J. Phys. Colloque C2 442444.Google Scholar
Güven, N., 1971 The crystal structure of 2M 1, phengite and 2M, muscovite Z. Kristallogr. 134 196212.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Minerals 7 223238.CrossRefGoogle Scholar
Kotlicki, A., Szczyrba, J. and Wiewiora, A., 1981 Mössbauer study of glauconites from Poland Clay Miner. 16 221230.CrossRefGoogle Scholar
Loewenstein, W., 1954 The distribution of aluminum in the tetrahedra of silicates and aluminates Amer. Mineral. 39 9296.Google Scholar
Malkova, K. M., 1956 On the celadonite of Pobuzhye Collected Papers on Mineralogy 10 305318.Google Scholar
Malysheva, T. V., Kazakov, G. A. and Satarova, L. M., 1976 Temperature of sedimentary rocks epigenesis according to Mössbauer spectroscopy Geochemistry 9 12911299.Google Scholar
McCauley, J. W. and Newnham, R. E., 1971 Origin and prediction of ditrigonal distortion in micas Amer. Mineral. 56 16261638.Google Scholar
McConchie, D. M., Ward, J. B., McCann, V. B. and Lewis, D. W., 1979 Mössbauer investigation of glauconite and its geological significance Clays & Clay Minerals 27 339348.CrossRefGoogle Scholar
MEDI (1975) Mössbauer effect data index covering the 1975 literature: J. C. Stevens and V. Stevens, eds. Univ. North Carolina at Asheville, 445 pp.Google Scholar
Mineeva, R. M., 1978 Relationship between Mössbauer spectra and defect structure in biotites from electric gradient calculations Phys. Chem. Minerals 2 267277.CrossRefGoogle Scholar
Pavlishin, V. I., Platonov, A. N., Polshin, E. V., Semenova, T. F. and Starova, G. L., 1978 Micas with iron in quadruple coordination Zapisky Vses. Mineral. Obshchestva 107 165176.Google Scholar
Radoslovich, E. W., 1962 The cell dimensions and symmetry of layer-lattice silicates. Regression relations Amer. Mineral. 47 617636.Google Scholar
Rozenson, I. and Heller-Kallai, L., 1978 Mössbauer spectra of glauconites reexamined Clays & Clay Minerals 26 173175.CrossRefGoogle Scholar
Russell, J. D., Goodman, B. A. and Fraser, A. R., 1979 Infrared and Mössbauer studies of reduced nontronites Clays & Clay Minerals 27 6371.CrossRefGoogle Scholar
Shutov, V. D., Kats, M Ya Drits, V. A., Sokolova, A. L., Kazakov, G. A. and Serratosa, J. M., 1972 Crystallochemical heterogeneity of glauconite as depending on the conditions of its formation and postsedimentary changes Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C 269279.Google Scholar
Slonimskaya, M. V., Besson, G., Daynyak, L. G., Tchoubar, C. and Drits, V. A., 1986 The interpretation of the IR spectra of celadonites and glauconites in the region of OH stretching frequencies Clay Miner. 21 377388.CrossRefGoogle Scholar
Smoliar, B. B., Daynyak, L. G., Bookin, A. S. and Drits, V. A., 1984 Structural features of dioctahedral mica poly-types and their crystal structure simulation Collected Abstr. Int. Conf. Crystal Growth and Characterization of Polytype Structures 1984 6566.Google Scholar
Tsipursky, S. I. and Drits, V. A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites Clay Miner. 19 177193.CrossRefGoogle Scholar
Tsipursky, S. I., Drits, V. A. and Chekin, S. S., 1978 Study of structural ordering of nontronite by means of oblique electron diffraction Izv. Akad. Nauk S.S.S.R., Ser. Geol. 10 105113.Google Scholar
Tsipursky, S. I., Drits, V. A. and Plançon, A., 1985 Calculation of the intensities distribution in the oblique texture electron diffraction patterns Kristallografiya 30 3844.Google Scholar