Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:50:39.608Z Has data issue: false hasContentIssue false

Ionic liquids-kaolinite nanostructured materials. Intercalation of pyrrolidinium salts

Published online by Cambridge University Press:  01 January 2024

Sadok Letaief*
Affiliation:
Centre for Catalysis Research and Innovation, and Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
Christian Detellier
Affiliation:
Centre for Catalysis Research and Innovation, and Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
*
* E-mail address of corresponding author: lsado@science.uottawa.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ionic liquids intercalated in kaolinite constitute a novel class of nanostructured material. Kaolinite-pyrrolidinium halide intercalates have been prepared successfully by reacting the pyrrolidinium salts with kaolinite which was preintercalated with dimethyl sulfoxide (DMSO) using the melt condition under N2. X-ray diffraction, 13C magic angle spinning nuclear magnetic resonance, differential thermal analysis (DTA)-thermal gravimetric analysis, and Fourier transform infrared spectroscopy confirm the displacement of DMSO during the intercalation process. Based on results from the various characterization techniques, a structural model is proposed in which one mole of the pyrrolidinium salt covers two or three structural units of kaolinite, depending on the structure and size of the salt. The thermal stability was improved remarkably after intercalation of the pyrrolidinium salts, compared to the pre-intercalate. The DTA-TGA data show that the largest number of organic units released and decomposed, occurs under N2 flow, at temperatures ranging from 260 to 340°C, depending on the nature of the intercalated organic salts.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Bailey, S.W., 1988 Hydrous Phyllosilicates (exclusive of Micas) Washington, D.C. Mineralogical Society of America.CrossRefGoogle Scholar
Benco, L. Tunega, D. Hafner, J. and Lischka, H., 2001 Orientation of OH groups in kaolinite and dickite: ab initio molecular dynamics study American Mineralogist 86 10571065 10.2138/am-2001-8-912.CrossRefGoogle Scholar
Branco, L.C. Crespo, J.G. and Afonso, C.A.M., 2002 Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids Angewandte Chemie 41 27712773 10.1002/1521-3773(20020802)41:15<2771::AID-ANIE2771>3.0.CO;2-U.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Branco, L.C. Crespo, J.G. and Afonso, C.A.M., 2002 Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes Chemistry — A European Journal 8 38653871 10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Brandt, K.B. Elboki, T.A. and Detellier, C., 2003 Intercalation and interlamellar grafting of polyols in layered aluminosilicates. D-Sorbitol and adonitol derivatives of kaolinite Journal of Materials Chemistry 13 25662572 10.1039/b306468a.CrossRefGoogle Scholar
Buzzeo, M.C. Hardacre, C. and Compton, R.G., 2004 Use of room temperature ionic liquids in gas sensor design Analytical Chemistry 76 45834588 10.1021/ac040042w.CrossRefGoogle ScholarPubMed
Deng, Y. White, G.N. and Dixon, J.B., 2002 Effect of structural stress on the intercalation rate of kaolinite Journal of Colloid and Interface Science 250 379393 10.1006/jcis.2001.8208.CrossRefGoogle ScholarPubMed
Earle, M.J. and Seddon, K.R., 2000 Ionic liquids. Green solvents for the future Pure and Applied Chemistry 72 13911398 10.1351/pac200072071391.CrossRefGoogle Scholar
Elboki, T.A. and Detellier, C., 2005 Interlamellar grafting of polyols in kaolinite Clay Science 12 3846.Google Scholar
Elboki, T.A. and Detellier, C., 2006 Aluminosilicate nanohybrid materials. Intercalation of polystyrene in kaolinite Journal of Physics and Chemistry of Solids 67 950955 10.1016/j.jpcs.2006.01.008.CrossRefGoogle Scholar
Frost, R.L. and Kristof, J., 2004 Raman and infrared spectroscopic studies of kaolinite surfaces modified by intercalation Interface Science and Technology 1 184215 10.1016/S1573-4285(04)80041-3.CrossRefGoogle Scholar
Gardolinski, J.E.F.C. and Lagaly, G., 2005 Grafted organic derivatives of kaolinite: I. Synthesis, chemical and Theological characterization Clay Minerals 40 537546 10.1180/0009855054040190.CrossRefGoogle Scholar
Gardolinski, J.E.F.C. and Lagaly, G., 2005 Grafted organic derivatives of kaolinite: II. Intercalation of primary n-alkylamines and delamination Clay Minerals 40 547556 10.1180/0009855054040191.CrossRefGoogle Scholar
Gardolinski, J.E. Carrera, L.C.M. Cantão, M.P. and Wypych, F., 2000 Layered polymer-kaolinite nanocomposites Journal of Materials Science 35 31133119 10.1023/A:1004820003253.CrossRefGoogle Scholar
Hayashi, S., 1997 NMR study of dynamics and evolution of guest molecules in kaolinite/dimethyl sulfoxide intercalation compound Clays and Clay Minerals 45 724732 10.1346/CCMN.1997.0450511.CrossRefGoogle Scholar
Itagaki, T. and Kuroda, K., 2003 Organic modification of the interlayer surface of kaolinite with propanediols by transesterification Journal of Materials Chemistry 13 10641068 10.1039/b211844k.CrossRefGoogle Scholar
Itagaki, T. Komori, Y. Sugahara, Y. and Kuroda, K., 2001 Synthesis of a kaolinite-poly(β-alanine) intercalation compound Journal of Materials 11 32913295.Google Scholar
Johnston, C.T. Sposito, G. Bocian, D.F. and Birge, R.R., 1984 Vibrational spectroscopic study of the interlamellar kaolinite-dimethyl sulfoxide complex Journal of Physical Chemistry 88 59595964 10.1021/j150668a043.CrossRefGoogle Scholar
Komori, Y. Sugahara, Y. and Kuroda, K., 1999 Direct intercalation of poly(vinylpyrrolidone) into kaolinite by a refined guest displacement method Chemistry of Materials 11 36 10.1021/cm9804721.CrossRefGoogle Scholar
Lagaly, G. Ogawa, M. Dékány, I., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clay mineral organic interactions Handbook of Clay Science Amsterdam Elsevier 309377 10.1016/S1572-4352(05)01010-X.CrossRefGoogle Scholar
Letaief, S. and Detellier, C., 2005 Reactivity of kaolinite in ionic liquids: preparation and characterization of a 1-ethyl pyridinium chloride-kaolinite intercalate Journal of Materials Chemistry 15 47344740 10.1039/b511282f.CrossRefGoogle Scholar
Letaief, S. and Detellier, C., 2007 Nanohybrid materials from the intercalation of imidazolium ionic liquids in kaolinite Journal of Materials Chemistry 17 1476–484 10.1039/b616922h.CrossRefGoogle Scholar
Letaief, S. and Detellier, C., 2007 Functionalized nanohybrid materials obtained from the interlayer grafting of aminoalcohols on kaolinite Chemical Communications 25 26132615 10.1039/b701235g.CrossRefGoogle Scholar
Letaief, S. Elbokl, T.A. and Detellier, C., 2006 Reactivity of ionic liquids with kaolinite: melt intersalation of ethyl pyridinium chloride in a urea-kaolinite pre-intercalate Journal of Colloid and Interface Science 302 254258 10.1016/j.jcis.2006.06.008.CrossRefGoogle Scholar
Martens, W.N. Frost, R.L. Kristof, J. and Horvath, E., 2002 Modification of kaolinite surfaces through intercalation with deuterated dimethylsulfoxide Journal of Physical Chemistry B 106 41624171 10.1021/jp0130113.CrossRefGoogle Scholar
Murakami, J. Itagaki, T. and Kuroda, K., 2004 Synthesis of kaolinite-organic nanohybrids with butanediols Solid State Ionics 172 279282 10.1016/j.ssi.2004.02.048.CrossRefGoogle Scholar
Neder, R.B. Burghammer, M. Grasl, T.h. Schulz, H. Bram, A. and Fiedler, S., 1999 Refinement of the kaolinite structure from single-crystal synchrotron data Clays and Clay Minerals 47 487494 10.1346/CCMN.1999.0470411.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J.M., 1984 Silicon-29 and aluminum-27 high-resolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Sekhon, S.S. Lalia, B.S. Park, J.S. Kim, C.S. and Yamada, K., 2006 Physicochemical properties of proton conducting membranes based on ionic liquid impregnated polymer for fuel cells Journal of Materials Chemistry 16 22562265 10.1039/b602280d.CrossRefGoogle Scholar
Sun, J. MacFarlane, D.R. and Forsyth, M., 2001 N,N-Dimethylpyrrolidinium hydroxide: a highly conductive solid material at ambient temperature Journal of Materials Chemistry 11 29402942 10.1039/b107545d.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C., 1993 Interlamellar covalent grafting of organic units on kaolinite Chemistry of Materials 5 747748 10.1021/cm00030a002.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C., 1994 Preparation and characterization of two distinct ethylene glycol derivatives of kaolinite Clays and Clay Minerals 42 552560 10.1346/CCMN.1994.0420506.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C., 1996 Aluminosilicate nanocomposite materials. Poly(ethylene glycol)-kaolinite intercalates Chemistry of Materials 8 927935 10.1021/cm9505299.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C., 1996 Chemically modified kaolinite. Grafting of methoxy groups on the interlamellar aluminol surface of kaolinite Journal of Materials Chemistry 6 16791685 10.1039/jm9960601679.CrossRefGoogle Scholar
Tunney, J.J. and Detellier, C., 1997 Interlamellar amino functionalization of kaolinite Canadian Journal of Chemistry 75 17661772 10.1139/v97-610.CrossRefGoogle Scholar
Wang, C.Y. Sun, J. Liu, H.K. Dou, S.X. MacFarlane, D. and Forsyth, M., 2005 Potential application of solid electrolyte P11OH in Ni/MH batteries Synthetic Metals 152 5760 10.1016/j.synthmet.2005.07.125.CrossRefGoogle Scholar
Winterton, N., 2006 Solubilization of polymers by ionic liquids Journal of Materials Chemistry 16 42814293 10.1039/b610143g.CrossRefGoogle Scholar
Yang, Z. and Pan, W., 2005 Ionic liquids: Green solvents for nonaqueous biocatalysis Enzyme and Microbial Technology 37 1928 10.1016/j.enzmictec.2005.02.014.CrossRefGoogle Scholar
Yu, L. Garcia, D. Ren, R. and Xiangqun, Z., 2005 Ionic liquid high temperature gas sensors Chemical Communications 17 22772279 10.1039/b501224d.CrossRefGoogle Scholar
Zhou, Z.B. Matsumoto, H. and Tatsumi, K., 2004 Low-melting, low-viscous, hydrophobic ionic liquids: N-alkyl(alkyl ether)-N-methylpyrrolidinium perfluoroethyltrifluoroborate Chemistry Letters 33 16361637 10.1246/cl.2004.1636.CrossRefGoogle Scholar
Zhou, Z.B. Matsumoto, H. and Tatsumi, K., 2006 Cyclic quaternary ammonium ionic liquids with perfluoroalkyltri-fluoroborates: synthesis, characterization, and properties Chemistry — A European Journal 12 21962212 10.1002/chem.200500930.CrossRefGoogle ScholarPubMed