Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T08:06:29.090Z Has data issue: false hasContentIssue false

Iron Oxides in a Soil Developed from Basalt

Published online by Cambridge University Press:  28 February 2024

A. T. Goulart
Affiliation:
Departamento de Química, UFMG-Pampulha, 31270-901 Belo Horizonte, MG, Brazil On leave from Departamento de Química, UFV, 36571-000 Viçosa, MG, Brazil
J. D. Fabris
Affiliation:
Departamento de Química, UFMG-Pampulha, 31270-901 Belo Horizonte, MG, Brazil
M. F. de Jesus Filho*
Affiliation:
Departamento de Química, UFMG-Pampulha, 31270-901 Belo Horizonte, MG, Brazil
J. M. D. Coey
Affiliation:
Department of Pure and Applied Physics, Trinity College, University of Dublin, Dublin 2, Ireland
G. M. da Costa
Affiliation:
Departamento de Química, UFOP, 35400-000 Ouro Preto, MG, Brazil
E. de Grave
Affiliation:
Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent, Belgium
*
Professor Milton Francisco de Jesus Filho died on January 2, 1996.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A dusky red Oxisol forming on a tholeiitic basalt is found to contain varying proportion of aluminous hematite (Hm) and titanoaluminous maghemite (Mh) in the different size fractions. Maghemite is the main iron oxide in the sand and silt fractions whereas Hm is dominant in the clay fraction, together with gibbsite (Gb), kaolinite (Ka), rutile (Rt) (and probably anatase, An) and Mh. Maghemite is also the major oxide mineral in the magnetic separates of soil fractions (sand, about 65% of the relative Mössbauer spectral area; silt, 60%). Hematite (sand, 30%; silt, 15%) and ilmenite (Im) (sand, 5%; silt, 16%) are also significantly present in the magnetic extract. Accessory minerals are Rt and An. No magnetite (Mt) was detected in any soil fraction. Sand- and silt-size Mh have similar nature (a 0= 0.8319 ± 0.0005 nm; about 8 mol% of Al substitution; saturation magnetization of 49 J T−1 kg−1), and certainly a common origin. Lattice parameters of clay-Mh are more difficult to deduce, as magnetic separation was ineffective in removing nonmagnetic phases. Al content in Hm varies from 14 mol% (clay and silt) to 20 mol% (sand). The proposed cation distribution on the spinel sites of the sand-size Mh is:

[Fe0.92Al0.08] {Fe1.43Ti0.18 □0.39}O4

(◻ = vacancy, [ ] = tetrahedral sites and { } = octahedral sites), with a corresponding molar mass of 208.8 g mol−1. The predicted magnetization based on this formula is σ ≅ 68 J T−1 kg−1, assuming collinear spin arrangement. The large discrepancy with the experimentally determined magnetization is discussed.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Footnotes

Research Director, National Fund for Scientific Research, Belgium.

References

Abreu, M.M. and Robert, M.N., 1985 Characterization of maghemite in B horizons of three soils from Southern Portugal Geoderma 56 56108.Google Scholar
Allan, J.E.M. Coey, J.M.D. Sanders, I.S. Schwertmann, U. Friedrich, G. and Wichowski, A., 1989 An occurrence of a fully oxidized natural titanomaghemite in basalt Mineral Mag 53 53304.CrossRefGoogle Scholar
Anand, R.R. and Glides, R.J., 1984 Mineralogical and chemical properties of weathered magnetite grains from lateritic saprolite J Soil Sci 35 35567 10.1111/j.1365-2389.1984.tb00613.x.CrossRefGoogle Scholar
Boudeulle, M. Batis-Landoulsi, H. Leclerq, C.H. and Vergnon, P., 1983 Structure of γFe2O3 microcrystals: Vacancy distribution and structure J Solid State Chem 48 48 32 10.1016/0022-4596(83)90055-5.CrossRefGoogle Scholar
Bowen, L.H. and De Grave, E., 1995 Mössbauer spectra in external field of highly substituted aluminous hematites J Magn Magn Mater 139 139 10 10.1016/0304-8853(95)90022-5.CrossRefGoogle Scholar
Bowen, L.H. De Grave, E. and Bryan, A.M., 1994 Mössbauer studies in external field of well crystallized Al-maghemites made from hematite Hyperfine Interact 94 941982 10.1007/BF02063726.CrossRefGoogle Scholar
Bowen, L.H. De Grave, E. Vandenberghe, R.E., Long, G.J. and Grandjean, F., 1993 Mössbauer effect studies of magnetic soils and sediments Mössbauer spectroscopy applied to magnetism and material science New York Plenum Pr. 115159 10.1007/978-1-4899-2409-4_4.CrossRefGoogle Scholar
Coey, J.M.D., 1987 Noncollinear spin structures Can J Phys 65 651232.CrossRefGoogle Scholar
Coey, J.M.D., Stucki, J.W. Goodman, B.A. and Schwertmann, U., 1988 Magnetic properties of iron in soil iron oxides and clay minerals Iron in soil and clay minerals Dordrecht Reidel 397465 10.1007/978-94-009-4007-9_14.CrossRefGoogle Scholar
Coey, J.M.D. Cugat, O. McCauley, J. and Fabris, J.D., 1992 A portable soil magnetometer Revista de Fisica Aplicada e Instrumentacao 7 730.Google Scholar
da Costa, G.M. De Grave, E. de Bakker, P.M.A. and Vandenberghe, R.E., 1995 Influence of nonstoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite Clays Clay Miner 43 43668.CrossRefGoogle Scholar
da Costa, G.M. De Grave, E. Bryan, A.M. and Bowen, L.H., 1994 Mössbauer studies of nano-sized aluminium-substituted maghemites Hyperfine Interact 94 941987 10.1007/BF02063727.CrossRefGoogle Scholar
da Costa, G.M. De Grave, E. Vandenberghe, R.E. Bowen, L.H. and de Bakker, P.M.A., 1994 The center shift in the Mössbauer spectra of maghemite and aluminium maghemites Clays Clay Miner 42 42633 10.1346/CCMN.1994.0420515.CrossRefGoogle Scholar
da Costa, G.M. Laurent, C.H. De Grave, E. and Vandenberghe, R.E., 1995 A comprehensive Mössbauer study of highly-substituted aluminum maghemites. Mineral spectroscopy: A tribute to R. G. Burns Geochem Soc Spec Publ 5 93104.Google Scholar
Curi, N. and Franzmeier, D.P., 1987 Effect of parent rocks on chemical and mineralogical properties of some oxisols in Brazil Soil Sci Soc Am J 51 51158 10.2136/sssaj1987.03615995005100010033x.CrossRefGoogle Scholar
De Grave, E. de Bakker, P.M.A. Bowen, L.H. and Vandenberghe, R.E., 1992 Effect of crystallinity and Al substitution on the applied-field Mössbauer spectra of iron oxide and oxyhy-droxides Z Pflanzenernähr Bodenk 155 155472 10.1002/jpln.19921550519.CrossRefGoogle Scholar
De Grave, E. Bowen, L.H. and Weed, S.B., 1982 Mössbauer study of aluminum-substituted hematites J Magn Magn Mater 27 27108 10.1016/0304-8853(82)90288-8.CrossRefGoogle Scholar
Demattê, J.L.I. and Marconi, A., 1991 A drenagem na mineralogia de solos desenvolvidos de diabásio em Piracicaba R Bras Ci Solo 15 15 8.Google Scholar
Ericsson, T. Krisnhamarthy, A. and Srivastava, B.K., 1986 Morin transition in Ti-substituted hematite: A Mössbauer study Phys Scripta 33 3390 10.1088/0031-8949/33/1/013.CrossRefGoogle Scholar
Fabris, J.D. Coey, J.M.D. Qinian, Q. and da Mussel, W. N., 1995 Characterization of Mg-rich maghemite Am Mineral 80 80669 10.2138/am-1995-7-802.CrossRefGoogle Scholar
Ferreira, B.A., 1995 Caracterização fisico-química de minerals ferruginosos de um pedossistema desenvolvido de basalto [MSc thesis] Belo Horizonte, Brazil Federal Univ of Minas Gerais.Google Scholar
Ferreira, S.A.D. Santana, D.P. Fabris, J.D. Curi, N. Nunes Filho, E. and Coey, J.M.D., 1993 Relações entre magnetização, elementos tracos e litologia de duas sequências de solos do Estado de Minas Gerais Rev Bras Ci Solo 18 167174.Google Scholar
Fine, P. and Singer, M.J., 1989 Contribution of ferrimagnetic minerals to oxalate- and dithionite-extractable iron Soil Sci Soc Am J 53 53196.CrossRefGoogle Scholar
Fontes, M.P.F. and Weed, S.B., 1991 Iron oxides in selected Brazilian Oxisols. I: Mineralogy Soil Sci Soc Am J 55 551149.Google Scholar
Gillot, B. and Rousset, A., 1990 On the limit of aluminum substitution in Fe3O4 and γFe2O3 Phys Status Solidi (a) 118 K5 K8 10.1002/pssa.2211180141.CrossRefGoogle Scholar
Goulart, A.T. de Jesus Filho, M.F. Fabris, J.D. and Coey, J.M.D., 1994 Characterization of a soil ilmenite developed from basalt Hyperfine Interact 91 91775 10.1007/BF02064605.CrossRefGoogle Scholar
Goulart, A.T. de Jesus Filho, M.F. Fabris, J.D. and Coey, J.M.D., 1994 Quantitative Mössbauer analysis of maghemite-hematite mixtures in external applied field Hyperfine Interact 83 83455 10.1007/BF02074316.CrossRefGoogle Scholar
Greaves, C., 1983 A powder neutron diffraction investigation of vacancy ordering and covalence in γFe2O3 J Solid State Chem 49 49333 10.1016/S0022-4596(83)80010-3.CrossRefGoogle Scholar
Guggenheim, S. and Martin, R.T., 1995 Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees Clays Clay Miner 43 43256 10.1346/CCMN.1995.0430213.CrossRefGoogle Scholar
Jackson, M.L., 1969 Soil chemical analysis—Advanced course Madison, WI ML Jackson.Google Scholar
Jeffery, P.G. and Hutchison, D., 1981 Chemical methods of rock analysis Oxford Pergamon Pr..Google Scholar
Jensen, L.S., 1976 A new cation plot for classifying subalkalic volcanic rocks Ontario Department of Mines.Google Scholar
de Jesus Filho, M.F. Fabris, J.D. Goulart, A.T. Coey, J.M.D. Ferreira, B.A. and Pinto, M.C.E., 1995 Ilmenite and magnetite of a tholeiitic basalt Clays Clay Miner 43 43642 10.1346/CCMN.1995.0430515.CrossRefGoogle Scholar
de Jesus Filho, M.F. da Mussel, W. N. Qinian, Q. Coey, J.M.D., Yamaguchi, T. and Abe, M., 1992 Magnetic properties of aluminium-doped γFe2O3 Proc 6th Int Conf on Ferrites (ICF 6) 126128.Google Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray diffraction procedures for polycrystalline and amorphous materials New York J. Wiley.Google Scholar
Lindsley, D.H., 1976 The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides Rev Mineral 3 L1 L60.Google Scholar
Mehra, O.P. and Jackson, M.L., 1960 Iron oxide removal from soils and clay a dithionite-citrate system buffered with sodium bicarbonate Clays Clay Miner 7 7327.Google Scholar
Moniz, A.A., 1972 Elementos de pedologia Sao Paulo Editora Poígono.Google Scholar
Mørup, S. and Topsøe, H., 1976 Mössbauer studies of thermal excitations in magnetically ordered microcrystals Appl Phys 11 1166.Google Scholar
Mørup, S. and Tronc, E., 1994 Superparamagnetic relaxation of weakly interacting particles Phys Rev Lett 72 723281 10.1103/PhysRevLett.72.3278.CrossRefGoogle ScholarPubMed
Moukarika, A. O’Brien, F. Coey, J.M.D. and Resende, M., 1991 Development of magnetic soil from ferroan dolomite Geophys Res Lett 18 182045 10.1029/91GL02110.CrossRefGoogle Scholar
Murad, E., 1996 Magnetic properties of microcrystalline iron(III) oxides and related materials as reflected in their Mössbauer spectra Phys Chem Minerals 23 23262 10.1007/BF00207766.CrossRefGoogle Scholar
Murad, E. and Johnston, J.H., 1987 Iron oxides and oxyhydroxides Mössbauer spectroscopy applied to inorganic chemistry 2 507582.Google Scholar
Murad, E. and Schwertmann, U., 1986 Influence of Al substitution and crystal size on the room temperature Mössbauer spectrum of hematite Clays Clay Miner 34 34 6 10.1346/CCMN.1986.0340101.CrossRefGoogle Scholar
Neves, A.A. Goulart, A.T. and Garotti, F.V., 1985 Caracterização da interferência da platina, na análise de ferro em amostras naturais Química Nova 8 152154.Google Scholar
Pinto, M.C.F., 1997 Caracterização e establidade ligogenética da magnetica de rochas maficas [MSc thesis] Belo Horizonte, Brazil Federal Univ of Minas Gerais.Google Scholar
Readman, P.W. and O’Reilly, W., 1972 Magnetic properties of oxidized (cation-deficient) titanomagnetites (FeTi_)3O4 J Geomagn Geoelect 24 2490 10.5636/jgg.24.69.CrossRefGoogle Scholar
Resende, M., 1976 Mineralogy, chemistry, morphology and geomorphology of some soils of the central plateau of Brazil [Ph.D. thesis] Purdue Univ. Diss Abstracts 37 4803.Google Scholar
Schobbenhaus, C. de Campos, D. A. Derze, G.R. and Asmus, H.E., 1984 Formaç~ao Mata da Corda (kmc) Ministério das Minas e Energia/DNPM. Geologia do Brasil: Texto explicativo do mapa geológico do Brasil e da área oceânica adjacente incluindo depósitos minerals 348.Google Scholar
Schwertmann, U. and Fechter, H., 1984 The influence of aluminum on iron oxides: XI. Aluminum-substituted in soils and its formation Soil Sci Soc Am J 48 481463 10.2136/sssaj1984.03615995004800060054x.CrossRefGoogle Scholar
Sidhu, P.S. Gilkes, R.J. and Posner, A.M., 1980 The behavior of Co, Ni, Zn, Cu, Mn, and Cr in magnetite during alteration to maghemite and hematite Soil Sci Soc Am J 44 135138 10.2136/sssaj1980.03615995004400010028x.CrossRefGoogle Scholar
Singer, M.J. Bowen, L.H. Verosub, K.L. Fine, P. and TenPas, J., 1995 Mössbauer spectroscopic evidence for citrate-bicarbonate-dithionite extraction of maghemite from soils Clays Clay Miner 43 43 7 10.1346/CCMN.1995.0430101.CrossRefGoogle Scholar
Stanjek, H. and Schwertmann, U., 1992 The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites Clays Clay Miner 40 40354 10.1346/CCMN.1992.0400316.CrossRefGoogle Scholar
Taylor, R.M. and Schwertmann, U., 1974 Maghemite in soils and its origin. 1. Properties and observation on soil maghemites Clays Clay Miner 10 10298.Google Scholar
Waychunas, G.A. and Lindslay, G.H., 1991 Cystal chemistry of oxides and oxhydroxides Rev Mineral 25, Oxide minerals: Petrologic and magnetic significance. Mineral Soc Am. 1268.CrossRefGoogle Scholar
Wolska, E. and Schwertmann, U., 1989 The vacancy ordering and distribution of aluminum ions in (FeAl)2O3 Solid State Ionics 32/33 214218 10.1016/0167-2738(89)90224-5.CrossRefGoogle Scholar