Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T12:51:34.007Z Has data issue: false hasContentIssue false

Low-temperature FTIR study of kaolin-group minerals

Published online by Cambridge University Press:  01 January 2024

Cliff T. Johnston*
Affiliation:
Crop, Soil and Environmental Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
Jessica Elzea Kogel
Affiliation:
IMERYS, Sandersville, GA 31082, USA
David L. Bish
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
Toshihiro Kogure
Affiliation:
Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Haydn H. Murray
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
*
* E-mail address of corresponding author: clays@purdue.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-temperature FTIR spectroscopy was used to characterize the v(OH) region of kaolin-group minerals including well ordered to poorly ordered kaolins from Georgia, Brazil, and England, along with samples of discrete dickite and nacrite. Low-temperature FTIR spectra were useful in resolving dickite- and nacrite-like features present in the spectra of kaolins when cooled to <30 K. These features were not resolved at room temperature and only partially resolved at liquid N2 temperature (77 K). The room-temperature and low-temperature positions of the ν(OH) bands of kaolinite, dickite, and nacrite were linearly correlated with the interatomic OH⋯O distances and this relationship served as the basis for polytype/disorder identification. Dickite or dickite-like disorder was found in high Hinckley-Index kaolinite from Keokuk, Iowa, and from Cornwall, England. Dickite- and nacrite-like features were observed in both high- and low-Hinckley-index kaolinite and the amounts of these stacking sequences generally increased with decreasing Hinckley Index.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Bailey, S.W., 1963 Polymorphism of the kaolin minerals American Mineralogist> 48 11961209.Google Scholar
Bailey, S.W. and Bailey, S.W., 1988 Polytypism of 1-1 layer silicates Hydrous Phyllosilicates (exclusive of Micas) Washington, D.C Mineralogical Society of America 927 10.1515/9781501508998-007.CrossRefGoogle Scholar
Balan, E. Saitta, A.M. Mauri, F. and Calas, G., 2001 First-principles modeling of the infrared spectrum of kaolinite American Mineralogist> 86 13211330 10.2138/am-2001-11-1201.CrossRefGoogle Scholar
Balan, E. Lazzeri, M. Saitta, A.M. Allard, T. Fuchs, Y. and Mauri, F., 2005 First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite American Mineralogist> 90 5060 10.2138/am.2005.1675.CrossRefGoogle Scholar
Barrios, J. Plançon, A. Cruz, M.I. and Tchoubar, C., 1977 Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite. Relationship with the infrared spectra Clays and Clay Minerals> 25 422429 10.1346/CCMN.1977.0250608.CrossRefGoogle Scholar
Bayliss, P. Loughnan, F.C. and Standard, J.C., 1965 Dickite in Hawkesbury Sandstone of Sydney Basin Australia American Mineralogist> 50 418426.Google Scholar
Beaufort, D. Cassagnabere, A. Petit, S. Lanson, B. Berger, G. Lacharpagne, J.C. and Johansen, H., 1998 Kaolinite-to-dickite reaction in sandstone reservoirs Clay Minerals> 33 297316 10.1180/000985598545499.CrossRefGoogle Scholar
Benco, L. Tunega, D. Hafner, J. and Lischka, H., 2001 Ab initio density functional theory applied to the structure and proton dynamics of clays Chemical Physics Letters> 333 479484 10.1016/S0009-2614(00)01412-3.CrossRefGoogle Scholar
Benco, L. Tunega, D. Hafner, J. and Lischka, H., 2001 Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study American Mineralogist> 86 10571065 10.2138/am-2001-8-912.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld Refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals> 41 738744 10.1346/CCMN.1993.0410613.CrossRefGoogle Scholar
Bish, D.L. and Chipera, S.J. (1998) Proceedings of the 35th Annual Clay Minerals Society Meeting, Cleveland, OH 90 (abstract).Google Scholar
Bish, D.L. and Chipera, S.J. (1999) Euroclay 1999: Conference of the European Clay Groups Association, September 5–9, 1999, 64 (abstract).Google Scholar
Bish, D.L. and Johnston, C.T., 1993 Rietveld refinement and Fourier transform infrared spectroscopic study of the dickite structure at low temperature Clays and Clay Minerals> 41 297304 10.1346/CCMN.1993.0410304.CrossRefGoogle Scholar
Bish, D.L. and von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays and Clay Minerals> 37 289296 10.1346/CCMN.1989.0370401.CrossRefGoogle Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tchoubar, C., 1989 Stacking faults in kaolin-group minerals in the light of real structural features Clays and Clay Minerals> 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G.W. and Porter, A.R.D., 1978 Occurrence of dickite in Jamaica — ordered and disordered varieties American Mineralogist> 63 554562.Google Scholar
Brindley, G.W. Kao, C. Harrison, J.L. Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolintes and dickites Clays and Clay Minerals> 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Buatier, M.D. Deneele, D. Dubois, M. Potdevin, J.L. and Lopez, M., 2000 Nacrite in the Lodeve Permian Basin: a TEM and fluid-inclusion study European Journal of Mineralogy> 12 329340 10.1127/ejm/12/2/0329.CrossRefGoogle Scholar
Cruz, M.D.R. and Reyes, E., 1998 Kaolinite and dickite formation during shale diagenesis: isotopic data Applied Geochemistry> 13 95104 10.1016/S0883-2927(97)00056-5.CrossRefGoogle Scholar
de Ligny, D. and Navrotsky, A., 1999 Energetics of kaolin polymorphs American Mineralogist> 84 506516 10.2138/am-1999-0404.CrossRefGoogle Scholar
Dera, P. Prewitt, C.T. Japel, S. Bish, D.L. and Johnston, C.T., 2003 Pressure-controlled polytypism in hydrous layered materials American Mineralogist> 88 14281435 10.2138/am-2003-1006.CrossRefGoogle Scholar
Dominy, S.C. and Camm, G.S., 1998 Geology and hydro-thermal development of Bostraze-Balleswidden kaolin deposit, Cornwall, United Kingdom Transactions of the Institution of Mining and Metallurgy Section B — Applied Earth Science> 107 B148B157.Google Scholar
Dornberger-Schiff, K. and Ďurovič, S., 1975 OD-interpretation of kaolinite-type structures. 1. Symmetry of kaolinite packets and their stacking possibilities Clays and Clay Minerals> 23 219229 10.1346/CCMN.1975.0230310.CrossRefGoogle Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., 1993 Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian Continental Shelf Clay Minerals> 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Farmer, V.C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4 539 pp.CrossRefGoogle Scholar
Farmer, V.C., 1998 Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite Clay Minerals> 33 601604 10.1180/claymin.1998.033.4.07.CrossRefGoogle Scholar
Farmer, V.C., 2000 Transverse and longitudinal crystal modes associated with OH-stretching vibrations in single crystals of kaolinite and dickite Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy> 56 927930 10.1016/S1386-1425(99)00182-1.CrossRefGoogle ScholarPubMed
Farmer, V.C. and Russell, J.D., 1964 The infra-red spectra of layer silicates Spectrochimica Acta> 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Fialips, C.I. Navrotsky, A. and Petit, S., 2001 Crystal properties and energetics of synthetic kaolinite American Mineralogist> 86 304311 10.2138/am-2001-2-313.CrossRefGoogle Scholar
Fialips, C.I. Majzlan, J. Beaufort, D. and Navrotsky, A., 2003 New thermochemical evidence on the stability of dickite vs. kaolinite American Mineralogist> 88 837845 10.2138/am-2003-5-612.CrossRefGoogle Scholar
Frost, R.L. and Kloprogge, J.T., 2000 Raman spectroscopy of nacrite single crystals at 298 and 77K Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy> 56 931939 10.1016/S1386-1425(99)00183-3.CrossRefGoogle Scholar
Giese, R.F., 1973 Interlayer bonding in kaolinite, dickite, nacrite Clays and Clay Minerals> 21 145149 10.1346/CCMN.1973.0210302.CrossRefGoogle Scholar
Giese, R.F., 1982 Theoretical studies of the kaolin minerals: electrostatic calculations Bulletin of Mineralogy> 105 417424.CrossRefGoogle Scholar
Giese, R.F. and Bailey, S.W., 1990 Kaolin minerals: structures and stabilities Hydrous Phyllosilicates (exclusive of Micas) Washington D.C Mineralogical Society of America 2966.Google Scholar
Giese, R.F. and Datta, P., 1973 Hydroxyl orientation in kaolinite, dickite, and nacrite American Mineralogist> 58 471479.Google Scholar
Hendricks, S.B., 1938 The crystal structure of nacrite Al2O3 2SiO2 2H2O and the polymorphism of the kaolin minerals Zeitschrift für Kristalographie> 100 509518.CrossRefGoogle Scholar
Hinckley, D.N., 1963 Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals> 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Iriarte, B. Petit, S. Huertas, F.J. Fiore, S. Grauby, O. Decarreau, A. and Linares, J., 2005 Synthesis of kaolinite with a high level of Fe3+ for Al substitution Clays and Clay Minerals> 53 110 10.1346/CCMN.2005.0530101.CrossRefGoogle Scholar
Johnston, C.T. Aochi, Y.O. and Sparks, D.L., 1996 Fourier transform infrared and Raman spectroscopy Methods of Soil Analysis Part 3 — Chemical Methods Madison, Wisconsin Soil Science Society of America 269321.Google Scholar
Johnston, C.T. Agnew, S.F. and Bish, D.L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals> 38 573583 10.1346/CCMN.1990.0380602.CrossRefGoogle Scholar
Johnston, C.T. Helsen, J. Schoonheydt, R.A. Bish, D.L. and Agnew, S.F., 1998 Single crystal Raman spectroscopic study of dickite American Mineralogist> 83 7584 10.2138/am-1998-1-208.CrossRefGoogle Scholar
Johnston, C.T. Sposito, G. and Birge, R.R., 1985 Raman spectroscopic study of kaolinite in aqueous suspension Clays and Clay Minerals> 33 483489 10.1346/CCMN.1985.0330602.CrossRefGoogle Scholar
Johnston, Cliff T. Wang, Shan-Li Bish, David L. Dera, Przemyslaw Agnew, Stephen F. and Kenney, John W., 2002 Novel pressure-induced phase transformations in hydrous layered materials Geophysical Research Letters> 29 16 17-1-17-4 10.1029/2002GL015402.CrossRefGoogle Scholar
Joswig, W. and Drits, V.A. (1986) The orientation of the hydroxyl groups in dickite by X-ray diffraction. Neues Jahrbuch für Mineralogie Monatshefte, 1922.Google Scholar
Keller, W.D., 1977 Scan electron micrographs of kaolins collected from diverse environments of origin — IV. Georgia kaolin and kaolinizing source rocks Clays and Clay Minerals> 25 311345 10.1346/CCMN.1977.0250501.CrossRefGoogle Scholar
Keller, W.D. and Haenni, R.P., 1978 Effects of micro-sized mixtures of kaolin minerals on properties of kaolinites Clays and Clay Minerals> 26 384396 10.1346/CCMN.1978.0260602.CrossRefGoogle Scholar
Kogure, T. and Inoue, A., 2005 Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM) American Mineralogist> 90 8589 10.2138/am.2005.1603.CrossRefGoogle Scholar
Kogure, T. and Inoue, A., 2005 Stacking defects and long-period polytypes in kaolin minerals from a hydrothermal deposit European Journal of Mineralogy> 17 465473 10.1127/0935-1221/2005/0017-0465.CrossRefGoogle Scholar
Kogure, T. Hybler, J. and Ďurovič, S., 2001 A HRTEM study of cronstedtite: Determination of polytypes and layer polarity in trioctahedral 1:1 phyllosilicates Clays and Clay Minerals> 49 310317 10.1346/CCMN.2001.0490405.CrossRefGoogle Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., 1996 Illitization of diagenetic kaolinite-to-dickite conversion series: Late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands Journal of Sedimentary Research> 66 501518.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Bauer, A. Cassagnabere, A. and Meunier, A., 2002 Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review Clay Minerals> 37 122 10.1180/0009855023710014.CrossRefGoogle Scholar
Ledoux, R.L. and White, J.L., 1964 Infrared study of selective deuteration of kaolinite and halloysite at room temperature Science> 145 4749 10.1126/science.145.3627.47.CrossRefGoogle ScholarPubMed
Libowitzky, E., 1999 Correlation of O-H stretching frequencies and O-H⋯O hydrogen bond lengths in minerals Monatshefte für Chemie> 130 10471059.CrossRefGoogle Scholar
Lombardi, G. Russell, J.D. and Keller, W.D., 1987 Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin Clays and Clay Minerals> 35 321335 10.1346/CCMN.1987.0350501.CrossRefGoogle Scholar
Michaelian, K.H., 1986 The Raman spectrum of kaolinite #9 at 21 deg. C Canadian Journal of Chemistry> 64 285289 10.1139/v86-048.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford, UK Oxford University Press 332 pp.Google Scholar
Murray, H.H., 1954 Structural variations of some kaolinites in relation to dehydrated halloysite American Mineralogist> 39 97108.Google Scholar
Pimentel, G.C. and McClellan, A.B., 1960 The Hydrogen Bond 1 San Fransisco, USA W.H. Freeman and Co. 475 pp.Google Scholar
Plançon, A., 2001 Order-disorder in clay mineral structures Clay Minerals> 36 114 10.1180/000985501547286.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray powder diffraction — II. Nature and proportion of defects in natural kaolinites Clays and Clay Minerals> 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C., 1990 An expert system for the structural characterization of kaolinites Clay Minerals> 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. and Snyder, R., 1988 The Hinckley index for kaolinites Clay Minerals> 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Snyder, R. Drits, V.A. and Bookin, A.S., 1989 Stacking faults in the kaolin-group minerals — defect structures of kaolinite Clays and Clay Minerals> 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Post, J.E. Bish, D.L., Bish, D.L. and Post, J.E., 1989 Rietveld refinement of crystal structures using powder X-ray diffraction data Modern Powder Diffraction Washington D.C Mineralogical Society of America 277305 10.1515/9781501509018-012.CrossRefGoogle Scholar
Prost, R., 1973 The influence of the Christiansen effect on the I.R. spectra of powders Clays and Clay Minerals> 21 363368 10.1346/CCMN.1973.0210512.CrossRefGoogle Scholar
Prost, R., 1984 Etude par spectroscopie infrarouge a basse temperature des groupes OH de structure de la kaolinite, de la dickite et de la nacrite Agronomie> 4 403406 10.1051/agro:19840413.CrossRefGoogle Scholar
Prost, R., 1984 Low temperature IR study of structural OH groups of kaolinite, dickite and nacrite Agronomie> 4 403406 10.1051/agro:19840413.CrossRefGoogle Scholar
Prost, R. Dameme, A. Huard, E. Driard, J., Schultz, L.G. van Olphen, H. and Mumpton, F.A., 1987 Low temperature (300–5K) IR study of structural OH groups of kaolinite, dickite, and nacrite Proceedings of the International Clay Conference, Denver 1985 Boulder, Colordao Clay Minerals Society 1723.Google Scholar
Prost, R. Dameme, A. Huard, E. Driard, J. and Leydecker, J.P., 1989 Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K Clays and Clay Minerals> 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Reynolds, R.C. and Bish, D.L., 2002 The effects of grinding on the structure of a low-defect kaolinite American Mineralogist> 87 16261630 10.2138/am-2002-11-1212.CrossRefGoogle Scholar
Rouxhet, P.G. Samudacheata, N. Jacobs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Minerals> 12 171178 10.1180/claymin.1977.012.02.07.CrossRefGoogle Scholar
Sato, H. Ono, K. Johnston, C.T. and Yamagishi, A., 2004 First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates American Mineralogist> 89 15811585 10.2138/am-2004-11-1201.CrossRefGoogle Scholar
Shoval, S. Yariv, S. Michaelian, K.H. Boudeulle, M. and Panczer, G., 1999 Hydroxyl-stretching bands ‘A’ and ‘Z’ in Raman and infrared spectra of kaolinites Clay Minerals> 34 551563 10.1180/000985599546442.CrossRefGoogle Scholar
Shoval, S. Yariv, S. Michaelian, K.H. Lapides, I. Boudeuille, M. and Panczer, G., 1999 A fifth OH-stretching band in IR spectra of kaolinites Journal of Colloid and Interface Science> 212 523529 10.1006/jcis.1998.6055.CrossRefGoogle ScholarPubMed
Shoval, S. Yariv, S. Michaelian, K.H. Boudeulle, M. and Panczer, G., 2001 Hydroxyl-stretching bands in curve-fitted micro-Raman, photoacoustic and transmission infrared spectra of dickite from St. Claire, Pennsylvania Clays and Clay Minerals> 49 347354 10.1346/CCMN.2001.0490408.CrossRefGoogle Scholar
Wang, S.L. and Johnston, C.T., 2000 Assignment of the structural OH stretching bands of gibbsite American Mineralogist> 85 739744 10.2138/am-2000-5-612.CrossRefGoogle Scholar
White, A.F. Blum, A.E. Schulz, M.S. Vivit, D.V. Stonestrom, D.A. Larsen, M. Murphy, S.F. and Eberl, D.D., 1998 Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes Geochimica et Cosmochimica Acta> 62 209226 10.1016/S0016-7037(97)00335-9.CrossRefGoogle Scholar
Zheng, H. and Bailey, S.W., 1994 Refinement of the nacrite structure Clays and Clay Minerals> 42 4652 10.1346/CCMN.1994.0420106.CrossRefGoogle Scholar
Zotov, A. Mukhamet-Galeev, A. and Schott, J., 1998 An experimental study of kaolinite and dickite relative stability at 150–300 degrees C and the thermodynamic properties of dickite American Mineralogist> 83 516524 10.2138/am-1998-5-611.CrossRefGoogle Scholar