Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:40:18.553Z Has data issue: false hasContentIssue false

Low-Temperature Hydrothermal Metamorphic Mineralization of Island-Arc Volcanics, South Apuseni Mountains, Romania

Published online by Cambridge University Press:  01 January 2024

George Dan Miron*
Affiliation:
Department of Earth Sciences, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland Department of Geology, Babeş Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
Philip S. Neuhoff
Affiliation:
Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, Florida 32611-2120, USA
Georg Amthauer
Affiliation:
Department of Material Sciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
*
*E-mail address of corresponding author: mirondanro@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The island-arc volcanics situated in the eastern part of the Căpîlnaş-Techereu nappe (South Apuseni Mountains, Romania) were studied to evaluate the temperature, fluid properties, and mineral chemistry during low-temperature metamorphism. Detailed observations of metamorphic mineral assemblages were conducted using powder X-ray diffraction and electron microprobe. The metamorphism involved albitization of plagioclase feldspar and the formation of mafic phyllosilicates, zeolites, and other hydrous Ca-Al-silicate minerals. Mafic phyllosilicates consisted of transitional dioctahedral-trioctahedral smectites, mixed-layer chlorite-smectite (C/S, 6–96% chlorite), and discrete chlorite. The zeolites were analcime, stilbite ± stellerite, heulandite, laumontite, epistilbite, and mordenite. Also present, as secondary minerals filling amygdales and veins, are prehnite, pumpellyite, and secondary amphibole. Two mineral assemblages were identified which provide important information about metamorphic conditions (temperature, reaction progress, and fluid properties): (1) heulandite + analcime + quartz; and (2) laumontite + albite + quartz + prehnite + pumpellyite ± amphibole. The types of and relations between minerals in the first assemblage suggest the occurrence of low-temperature hydrothermal metamorphism in the zeolite facies at ~125°C, whereas the second assemblage was metamorphosed at 200°C. The composition and variability of the mineral assemblages in the study area suggest that, due to slow reaction rates, the low-temperature transformations and mineral assemblages were influenced not only by temperature but also by local rock composition, fluid-rock ratio, and fluid chemistry.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Alt, J.C., Frey, M. and Robinson, M., 1999 Very low-grade hydrothermal metamorphism of basic igneous rocks Low-grade Metamorphism Oxford, UK Blackwell Science 169201.Google Scholar
Árkai, P. Mata, M.P. Giorgetti, G. Peacor, D.R. and Toth, M., 2000 Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study Journal of Metamorphic Geology 18 531550.10.1046/j.1525-1314.2000.00272.xCrossRefGoogle Scholar
Bedelean, I., 1972 Zeoliţii din Munţii Apuseni şi fenomenul de zeolitizare PhD Thesis Cluj-Napoca, Romania University of Babeş-Bolyai.Google Scholar
Beiersdorfer, R.E., 1993 Metamorphism of a Late Jurassic volcano-plutonic arc, northern California, U.S.A Journal of Metamorphic Geology 11 415428.10.1111/j.1525-1314.1993.tb00158.xCrossRefGoogle Scholar
Bettison, V. Mackinnon, J.D.R. and Schiffman, P., 1991 Integrated TEM, XRD and electron microprobe investigation of mixed-layer chlorite-smectite from the Point Sal ophiolite, California Journal of Metamorphic Geology 9 697710.10.1111/j.1525-1314.1991.tb00559.xCrossRefGoogle Scholar
Bevins, R.E. and Robinson, D., 1993 Parageneses of Ordovician sub-greenschist to greenschist facies metabasites from Wales, UK European Journal of Mineralogy 5 925935.10.1127/ejm/5/5/0925CrossRefGoogle Scholar
Bevins, R.E. and Robinson, D., 1995 Regional low-grade polygenetic metamorphism and inversion in the northern part of Eastern Belt, northern Sierra Nevada, California Low-Grade Metamorphism of Mafic Rocks 296 2950.10.1130/SPE296-p29CrossRefGoogle Scholar
Bevins, R.E. Robinson, D. and Rowbotham, G., 1991 Compositional variation in mafic phyllosilicates from regional low grade metabasites and their application of the chlorite geothermometer Journal of Metamorphic Geology 9 711721.10.1111/j.1525-1314.1991.tb00560.xCrossRefGoogle Scholar
Bevins, R.E. Rowbotham, G. and Robinson, D., 1991 Zeolite to prehnite-pumpellyite facies metamorphism of the late Proterozoic Zig-Zag Dal Basalt Formation, eastern North Greenland Lithos 27 155165.10.1016/0024-4937(91)90010-ICrossRefGoogle Scholar
Boak, J.M. Cloke, P. and Broxton, D., 1991 Mineral chemistry of clinoptilolite and heulandite in diagenetically altered tuffs from Yucca Mountain, Nye County, Nevada Geological Society of America, Program with abstracts 23 A186.Google Scholar
Bortolotti, V. Nicolae, I. Marroni, I. Pandolfi, L. Principi, G. and Saccani, E., 2002 Geological and petrological evidences for Jurassic association of ophiolites and Island arc volcanics in the South Apuseni Mountains (Romanian Carpathians) International Geology Review 44 938955.10.2747/0020-6814.44.10.938CrossRefGoogle Scholar
Cathelineau, M., 1988 The chlorite and illite geothermometers Chemical Geology 70 182182.10.1016/0009-2541(88)90734-6CrossRefGoogle Scholar
Chipera, S.J. and Apps, J.A., 2001 Geochemical stability of natural zeolites Natural Zeolites: Occurrence, Properties, Applications 45 117161.10.1515/9781501509117-005CrossRefGoogle Scholar
Cho, M. Liou, J.G. and Maruyama, S., 1986 Transition from the zeolite to prehnite-pumpellyite facies in the Karmutsen Metabasites, Vancouver Island, British Columbia Journal of Petrology 27 467494.10.1093/petrology/27.2.467CrossRefGoogle Scholar
Cho, M., 1991 Zeolite to prehnite-pumpellyite facies metamorphism in the Toa Baja Drill Hole, Puerto Rico Geophysical Research Letters 18 525528.10.1029/91GL00409CrossRefGoogle Scholar
Coombs, D.S., 1960 Lower grade metamorphic facies in New Zealand 21st International Geological Congress, Copenhagen, 1960 13 339351.Google Scholar
Coombs, D.S. Nakamura, Y. and Vuagnat, M., 1976 Pumpellyite-actinolite facies schist of the Tevayanne formation, near Loeche, Switzerland Journal of Petrology 17 440471.10.1093/petrology/17.4.440CrossRefGoogle Scholar
Day, H.W. and Springer, R.K., 2005 The first appearance of actinolite in the prehnite-pumpellyite facies, Sierra Nevada, California The Canadian Mineralogist 43 89101.10.2113/gscanmin.43.1.89CrossRefGoogle Scholar
Dekayir, A. Amouric, M. and Olives, J., 2005 Clay minerals in hydrothermally altered basalts from Middle Atlas, Morocco Clay Minerals 40 6777.10.1180/0009855054010156CrossRefGoogle Scholar
Digel, S. and Ghent, E.D., 1994 Fluid-mineral equilibria in prehnite-pumpellyite to greenschist facies metabasites near Flin Flon, Manitoba, Canada: implications for petrogenetic grids Journal of Metamorphic Geology 12 467477.10.1111/j.1525-1314.1994.tb00036.xCrossRefGoogle Scholar
Drief, A. and Schiffman, P., 2004 Very low-temperature alteration of sideromelane in hyaloclastites and hyalotuffs from Kilauea and Mauna Kea volcanoes: Implications for the mechanism of palagonite formation Clays and Clay Minerals 52 622634.Google Scholar
Ellero, A. Leoni, L. Marroni, M. Nicolae, I. Pandolfi, L. and Sartori, F., 2002 Deformation and metamorphism in the Feneş Nappe (southern Apuseni Mountains, Romania) Comptes Rendus Geoscience 334 347354.10.1016/S1631-0713(02)01754-6CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R., 1995 Clay mineral thermometry: A critical perspective Clays and Clay Minerals 43 540553.10.1346/CCMN.1995.0430504CrossRefGoogle Scholar
Evarts, R.C. and Schiffman, P., 1983 Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California American Journal of Science 283 289340.10.2475/ajs.283.4.289CrossRefGoogle Scholar
Fridriksson, T. Neuhoff, P.S. Arnorsson, S. and Bird, D.K., 2001 Geological constraints on the thermodynamic properties of the stilbite–stellerite solid solution in low-grade metabasalts Geochimica et Cosmochimica Acta 65 39934008.10.1016/S0016-7037(01)00629-9CrossRefGoogle Scholar
Giorgetti, G. Monecke, T. Kleeberg, R. and Hannington, M.D., 2006 Low-temperature hydrothermal alteration of silicic glass at the Pacmanus hydrothermal vent field, Manus basin: An XRD, SEM and AEM-TEM study Clays and Clay Minerals 54 240251.10.1346/CCMN.2006.0540209CrossRefGoogle Scholar
Giorgetti, G. Monecke, T. Kleeberg, R. and Hannington, M.D., 2009 Low-temperature hydrothermal alteration of trachybasalt at Conical Seamount, Papua New Guinea: Formation of smectite and metastable precursor phases Clays and Clay Minerals 57 725741.10.1346/CCMN.2009.0570606CrossRefGoogle Scholar
Hoeck, V. Ionescu, C. Balintoni, I. and Koller, F., 2009 The Eastern Carpathians "ophiolites" (Romania): Remnants of a Triassic ocean Lithos 108 151171.10.1016/j.lithos.2008.08.001CrossRefGoogle Scholar
Istrate, G., 1980 The nature and composition of Romanian zeolites Anuarul Institutului de Geologie si Geofizica 56 143152.Google Scholar
Inoue, A. and Utada, M., 1991 Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan American Mineralogist 76 628640.Google Scholar
Ionescu, C. Hoeck, V. Tomek, C. Koller, F. Balintoni, I. and Besutiu, L., 2009 New insights into the basement of the Transylvanian Depression (Romania) Lithos 108 172191.10.1016/j.lithos.2008.06.004CrossRefGoogle Scholar
Leoni, L. Lezzerini, M. Battaglia, S. and Cavalcante, E., 2010 Corrensite and chlorite-rich Chl-S mixed layers in sandstones from the ‘Macigno’ Formation (northwestern Tuscany, Italy) Clay Minerals 45 87106.10.1180/claymin.2010.045.1.87CrossRefGoogle Scholar
Liou, J.G., 1979 Zeolite facies metamorphism of basaltic rocks from the East Taiwan ophiolite American Mineralogist 64 114.Google Scholar
Liou, J.G. Maruyama, S. Cho, M., Frey, M., 1987 Very low-grade metamorphism of volcanic and volcanoclastic rocks-mineral assemblages and mineral facies Low-Temperature Metamorphism Glasgow, UK Blackie & Son Ltd. 59113.Google Scholar
Marantos, I. Markopoulos, Th Christidis, G.E. and Perdikatsis, V., 2008 Geochemical characteristics of the alteration of volcanic and volcaniclastic rocks in the Feres Basin, Thrace, NE Greece Clay Minerals 43 575595.10.1180/claymin.2008.043.4.05CrossRefGoogle Scholar
Maruyama, S. and Liou, J.G., 1988 Petrology of Franciscan metabasites along the jadeite-glaucophane type facies series, Cazadero, California Journal of Petrology 29 137.10.1093/petrology/29.1.1CrossRefGoogle Scholar
Miyahara, M. Kitagawa, R. and Uehara, S., 2005 Chlorite in metabasites from the Mikabu and north Chichibu belts, southwest Japan Clays and Clay Minerals 53 466477.10.1346/CCMN.2005.0530504CrossRefGoogle Scholar
Merriman, R.J. Peacor, D.R., Frey, M. and Robinson, D., 1999 Very low grade metapelites: Mineralogy, microfabrics and measuring reaction progress Low-Grade Metamorphism Oxford, UK Blackwell Science Ltd. 1060.Google Scholar
Meunier, A. Mas, A. Beaufort, D. Patrier, P. and Dudoignon, P., 2008 Clay minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). I. Mineralogy Clays and Clay Minerals 56 711729.CrossRefGoogle Scholar
Meunier, A. Mas, A. Beaufort, D. Patrier, P. and Dudoignon, P., 2008 Clay minerals in basalt-hawaiite rocks from Mururoa atoll (French Polynesia). II. Petrography and geochemistry Clays and Clay Minerals 56 730750.CrossRefGoogle Scholar
Miron, D. (2006) Preliminary mineralogical aspects on some zeolites from the Mureş Valley, Romania. 3rd “Mineral Science in the Carpathians” International Conference. Acta Mineralogica-Petrographica, Abstract Series 5, Szeged, Hungary.Google Scholar
Muñoz, M. Aguirre, L. Vergara, M. Demant, A. Fuentes, F. and Fock, A., 2010 Prehnite-pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33°50’S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state Andean Geology 31 5477.Google Scholar
Neuhoff, P.S. and Ruhl, L.S., 2006 Mechanisms and geochemical significance of Si-Al substitution in zeolite solid solutions Chemical Geology 225 373387.10.1016/j.chemgeo.2005.08.029CrossRefGoogle Scholar
Neuhoff, P.S. Rogers, K.A. Stannius, L.S. Bird, D.K. and Pedersen, A.K., 2006 Regional very low-grade metamorphism of basaltic lavas, Disko-Nuussuaq region, west Greenland Lithos 92 3354.CrossRefGoogle Scholar
Nicolae, I., 1994 Guide to excursion. Forth Day: The ophiolitic rocks from Mureş Valley ALCAPA II 75 136145.Google Scholar
Passaglia, E. and Sheppard, R.A., 2001 The crystal chemistry of zeolites Natural Zeolites: Occurrence, Properties, Applications 45 6992.10.1515/9781501509117-004CrossRefGoogle Scholar
Rieder, M. Cavazzini, G. D’yakonov, Y.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Mueller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1998 The nomenclature of the micas The Canadian Mineralogist 36 4148.Google Scholar
Reynolds, R.C. Jr., 1988 Mixed layer chlorite minerals Hydrous Phyllosilicates 19 601629.10.1515/9781501508998-020CrossRefGoogle Scholar
Robinson, D. Bevins, R.E. and Rowbotham, G., 1993 The characterization of mafic phyllosilicates in low-grade metabasalts from eastern North Greenland American Mineralogist 78 377390.Google Scholar
Robinson, D. and Bevins, R.E., 1994 Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis Clay Minerals 29 223237.CrossRefGoogle Scholar
Robinson, D. Bevins, R.E. and Rubinstein, N., 2005 Subgreenschist facies metamorphism of metabasites from the Precordillera terrane of western Argentina; constraints on the later stages of accretion onto Gondwana European Journal of Mineralogy 17 441452.10.1127/0935-1221/2005/0017-0441CrossRefGoogle Scholar
Saccani, E. Nicolae, I. and Tassinari, R., 2001 Tectonomagmatic setting of the Jurrasic ophiolties from the South Apuseni Mountains (Romania): petrological and geochemical evidence Ofioliti 26 922.Google Scholar
Savu, H., 1983 Goetectonic and magmatic evolution of the Mureş zone (Apuseni Mountains)–Romania Anuarul institutului de Geologie si Geofizică 61 253262.Google Scholar
Savu, H., 1996 Metamorphic and metasomatic processes in the Mureş Zone Alpine ophiolites and the related formations: a synthesis aproach Analele Universitatii din Bucuresti 49 314.Google Scholar
Savu, H. and Udrescu, C., 1996 The ophiolites of the Mureş couloir between Căpîlnaş and Tisa (Mureş Zone) Romanian Journal of Petrology 77 6170.Google Scholar
Savu, H. Lemne, M. Romanescu, O. Stoian, M. and Grabari, G., 1986 Distribution of U, Th, K, REE and other trace elements in island arc volcanics and some ophiolites from Vata-Vorta-Vălisoara region (Mureş zone) Dări de seamă ale Institutului de Geologie si Geofizică 70–71 431452.Google Scholar
Savu, H. Stoian, M. Tiepac, I. and Grabari, M., 1994 Petrological significance of REE, U, Th, Rb, Sr, Hf and the Sr 87/86 in the basaltic complex of the Mureş zone Romanian Journal of Petrology 76 7784.Google Scholar
Schiffman, P. and Fridleifsson, G.O., 1991 The smectite to chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations Journal of Metamorphic Geology 9 679696.CrossRefGoogle Scholar
Schiffman, P. and Staudigel, H., 1995 Hydrothermal alteration of a scamount complex on La Palma, Canary Islands: implications for metamorphism in accreted terranes Geology 22 151–54.Google Scholar
Schmidt, S.T.h. and Robinson, D., 1997 Metamorphic grade and porosity and permeability controls on mafic phyllosilicate distributions in a regional zeolite to greenschist facies transition of the North Shore Volcanic Group, Minnesota GSA Bulletin 109 683697.2.3.CO;2>CrossRefGoogle Scholar
Shau, Y.H. and Peacor, D.R., 1992 Phyllosilicates in hydrothermally altered basalt from DSDP Hole 504B, leg 83 A TEM and AEM study. Contributions to Mineralogy and Petrology 112 119133.Google Scholar
Shau, Y.H. Peacor, D.R. and Essene, E.J., 1990 Corrensite and mixed-layer chlorite/smectite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contributions to Mineralogy and Petrology 105 123142.CrossRefGoogle Scholar
Springer, R.K. Day, H.W. and Beiersdorfer, R.E., 1992 Prehnite-pumpellyite to greenschist facies transition, Smartville Complex, near Auburn, California Journal of Metamorphic Geology 10 147170.CrossRefGoogle Scholar
Treacy, M.M.J. Higgins, J.B. and von Ballmoos, R., 2001 Collection of Simulated XRD Powder Diffraction Patterns for Zeolites 4th Amsterdam Elsevier.Google Scholar
Utada, M., 1970 Occurrence and distribution of authigenic zeolites in the Neogene pyroclastic rocks in Japan Scientific Papers of the College of General Education, University of Tokyo 20 191262.Google Scholar
Utada, M., 2001 Zeolites in hydrothermally altered rocks Natural Zeolites: Occurrence, Properties, Applications 45 305322.CrossRefGoogle Scholar