Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:20:39.109Z Has data issue: false hasContentIssue false

Microstructure of organo-bentonites in water and the effect of steric hindrance on the uptake of organic compounds

Published online by Cambridge University Press:  01 January 2024

Jianxi Zhu
Affiliation:
Department of Environmental Science, Xixi Campus, Zhejiang University, 148 Tianmushan Street, Hangzhou, Zhejiang 310028, China
Lizhong Zhu*
Affiliation:
Department of Environmental Science, Xixi Campus, Zhejiang University, 148 Tianmushan Street, Hangzhou, Zhejiang 310028, China
Runliang Zhu
Affiliation:
Department of Environmental Science, Xixi Campus, Zhejiang University, 148 Tianmushan Street, Hangzhou, Zhejiang 310028, China
Baoliang Chen
Affiliation:
Department of Environmental Science, Xixi Campus, Zhejiang University, 148 Tianmushan Street, Hangzhou, Zhejiang 310028, China
*
* E-mail address of corresponding author: zlz@zju.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To further elucidate adsorption-to-partition transitional mechanisms which have been proposed previously for organo-bentonites with different surfactant loadings, the structural characteristics of interlayer surfactant aggregates on organo-bentonite with different surfactant cetyltrimethylammonium bromide loading levels (0.20–2.56 times cation exchange capacity, CEC) have been investigated by in situ X-ray diffraction (XRD) and Fourier TransformInfrared (FTIR) spectroscopy. The sorption properties and the structure of the clay interlayers changed according to the type of surfactant, the surfactant loading level, and the state of hydration in the clays. Based on the sorption of nitrobenzene, phenol, and aniline to organobentonites, the contaminant sorption coefficients (Ksf), normalized with the organic carbon content, show a remarkable dependence on surfactant loading levels. The Ksf values first increased with surfactant loading until reaching a maximum at 1.0 to 1.2 times the CEC, and then decreased. According to the theoretical calculation of the volume fractions relating to the interlamellar space, the interlamellar microenvironment became a more hydrophobic medium, contributing to the dissolution of organic contaminants, as the surfactant loading increased from 0.20 to 2.56 times the CEC. However, the increase in packing density (ρ) for the intercalates, and induced steric hindrances both affect the result in terms of a reduction in the accessible free space where the organic contaminants can be located, which might be a negative factor in the sorption capacity.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Bakker, M.G. Morris, T.A. Tu, G.L. and Granger, E., 2000 Surfactant aggregates (solloids) adsorbed on silica as stationary chromatographic phases: structures and properties Journal of Chromatography B: Biomedical Sciences and Applications 743 6578 10.1016/S0378-4347(00)00132-8.CrossRefGoogle ScholarPubMed
Boyd, S.A. Mortland, M.M. and Chiou, C.T., 1988 Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite Soil Science Society of America Journal 52 652657 10.2136/sssaj1988.03615995005200030010x.CrossRefGoogle Scholar
Chen, B.L. Zhu, L.Z. Zhu, J.X. and Xing, B.S., 2005 Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds Environmental Science & Technology 39 60936100 10.1021/es0502674.CrossRefGoogle ScholarPubMed
Dékány, I., 1992 Liquid adsorption and immersional wetting on hydrophilic/hydrophobic solid surfaces Pure and Applied Chemistry 64 14991509 10.1351/pac199264101499.CrossRefGoogle Scholar
Dékány, I., 1994 Interaction between surfactants and soil colloids: adsorption, wetting and structural properties Progress in Colloid and Polymer Science 95 7390 10.1007/BFb0115706.CrossRefGoogle Scholar
Dékány, I. Szanto, F. Nagy, L.G. and Foti, G., 1975 Adsorption of liquid mixtures on bentonite and organophilic bentonite Journal of Colloid and Interface Science 50 265271 10.1016/0021-9797(75)90229-5.CrossRefGoogle Scholar
Dékány, I. Szántó, F. Weiss, A. and Lagaly, G., 1985 Interlamellar liquid sorption on hydrophobic silicates Berichte der Bunsen-Gesellschaft Physical Chemistry Chemical Physics 89 6267 10.1002/bbpc.19850890112.CrossRefGoogle Scholar
Dékány, I. Szántó, F. and Nagy, L.G., 1986 Sorption and immersional wetting on clay minerals having modified surface. II. Interlamellar sorption and wetting on organic montmorillonites Journal of Colloid and Interface Science 109 376384 10.1016/0021-9797(86)90316-4.CrossRefGoogle Scholar
Dékány, I. Szántó, F. Weiss, A. and Lagaly, G., 1986 Interactions of hydrophobic layer silicates with alcohol-benzene mixtures. II. Structure and composition of the adsorption layer Berichte der Bunsen-Gesellschaft Physical Chemistry Chemical Physics 90 427431 10.1002/bbpc.19860900508.CrossRefGoogle Scholar
Dékány, I. Szántó, F. and Weiss, A., 1989 The liquid-crystal structure of adsorbed layer and the stability of dispersed systems in organic liquids Colloids and Surfaces 41 107121 10.1016/0166-6622(89)80046-0.CrossRefGoogle Scholar
Dékány, I. Szekeres, M. Marosi, T. Balázs, J. and Tombácz, E., 1994 Interaction between surfactants and soil colloids: adsorption, wetting and structural properties Progress in Colloid and Polymer Science 95 7390 10.1007/BFb0115706.CrossRefGoogle Scholar
Dékány, I. Farkas, A. Kiraly, Z. Klumpp, E. and Narres, H.D., 1996 Interlamellar adsorption of 1-pentanol from aqueous solution on hydrophobic clay minerals Colloids and Surfaces, A: Physicochemical and Engineering Aspects 119 713 10.1016/S0927-7757(96)03738-7.CrossRefGoogle Scholar
Döring, J. Lagaly, G. Beneke, K. and Dékány, I., 1993 Interlamellar adsorption of alcohols. 4. Adsorption properties of crystalline silicas Colloids and Surfaces, A: Physicochemical and Engineering Aspects 71 219231 10.1016/0927-7757(93)80037-F.CrossRefGoogle Scholar
Fan, A.X. Somasundaran, P. and Turro, N.J., 1997 Adsorption of alkyltrimethylammonium bromides on negatively charged alumina Langmuir 13 506510 10.1021/la9607215.CrossRefGoogle Scholar
Favre, H. and Lagaly, G., 1991 Organo-bentonites with quaternary alkylammonium ions Clay Minerals 26 1932 10.1180/claymin.1991.026.1.03.CrossRefGoogle Scholar
Harwell, J.H., 1985 Pseudophase separation model for surfactant adsorption: isomerically pure surfactants Langmuir 1 251262 10.1021/la00062a013.CrossRefGoogle Scholar
He, H.P. Frost, R.L. Deng, F. Zhu, J.X. Wen, X.Y. and Yuan, P., 2004 Conformation of surfactant molecules in the interlayer of montmorillonite studied by 13C MAS NMR Clays and Clay Minerals 52 350356 10.1346/CCMN.2004.0520310.CrossRefGoogle Scholar
He, H.P. Galy, J. and Gerard, J.F., 2005 Molecular simulation of the interlayer structure and the mobility of alkyl chains in HDTMA+/montmorillonite hybrids Journal of Physical Chemistry B 109 1330113306 10.1021/jp0517495.CrossRefGoogle ScholarPubMed
Jaynes, W.F. and Boyd, S.A., 1991 Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays Soil Science Society of America Journal 55 4348 10.2136/sssaj1991.03615995005500010007x.CrossRefGoogle Scholar
Kung, K.H.S. and Hayes, K.F., 1993 Fourier-transform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica Langmuir 9 263267 10.1021/la00025a050.CrossRefGoogle Scholar
Lagaly, G., 1976 Kink-block and crooked-block structures of bimolecular films Angewandte Chemie 88 628639 10.1002/ange.19760881903.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Minerals 16 121 10.1180/claymin.1981.016.1.01.CrossRefGoogle Scholar
Lagaly, G., 1982 Layer charge heterogeneity in vermiculites Clays and Clay Minerals 30 215222 10.1346/CCMN.1982.0300308.CrossRefGoogle Scholar
Lee, E.M. Thomas, R.K. Penfold, J. and Ward, R.C., 1989 Structure of aqueous decyltrimethylammonium bromide solutions at the air water interface studied by the specular reflection of neutrons Journal of Physical Chemistry 93 381388 10.1021/j100338a073.CrossRefGoogle Scholar
Lee, S.Y. and Kim, S.J., 2002 Expansion of smectite by hexadecyltrimethylammonium Clays and Clay Minerals 50 435445 10.1346/000986002320514163.CrossRefGoogle Scholar
Li, Y.Q. and Ishida, H., 2003 Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries Langmuir 19 24792484 10.1021/la026481c.CrossRefGoogle Scholar
Li, Z.H. and Bowman, R.S., 1998 Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading Environmental Science and Technology 32 22782282 10.1021/es971118r.CrossRefGoogle Scholar
Marosi, T. Dékány, I. and Lagaly, G., 1994 Displacement processes on hydrophilic/hydrophobic surfaces in 1-propanol-water mixtures Colloid and Polymer Science 272 11361142 10.1007/BF00652383.CrossRefGoogle Scholar
Patrick, H.N. Warr, G.G. Manne, S. and Aksay, I.A., 1999 Surface micellization patterns of quaternary ammonium surfactants on mica Langmuir 15 16851692 10.1021/la981612o.CrossRefGoogle Scholar
Rennie, A.R. Lee, E.M. Simister, E.A. and Thomas, R.K., 1990 Structure of a cationic surfactant layer at the silica-water interface Langmuir 6 10311034 10.1021/la00095a025.CrossRefGoogle Scholar
Sheng, G.Y. and Boyd, S.A., 2000 Polarity effect on dichlorobenzene sorption by hexadecyltrimethylammonium-exchanged clays Clays and Clay Minerals 48 4350 10.1346/CCMN.2000.0480105.CrossRefGoogle Scholar
Sheng, G.Y. Xu, S. and Boyd, S.A., 1996 Mechanism(s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter Environmental Science and Technology 30 15531557 10.1021/es9505208.CrossRefGoogle Scholar
Sheng, G.Y. Xu, S.H. and Boyd, S.A., 1996 Cosorption of organic contaminants from water by hexadecyltrimethylammonium-exchanged clays Water Research 30 14831489 10.1016/0043-1354(95)00303-7.CrossRefGoogle Scholar
Slade, P.G. and Gates, W.P., 2004 The swelling of HDTMA smectites as influenced by their preparation and layer charges Applied Clay Science 25 93101 10.1016/j.clay.2003.07.007.CrossRefGoogle Scholar
Slade, P.G. and Gates, W.P., 2004 The ordering of HDTMA in the interlayers of vermiculite and the influence of solvents Clays and Clay Minerals 52 204210 10.1346/CCMN.2004.0520206.CrossRefGoogle Scholar
Somasundaran, P. and Huang, L., 2000 Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces Advances in Colloid and Interface Science 88 179208 10.1016/S0001-8686(00)00044-0.CrossRefGoogle ScholarPubMed
Somasundaran, P. and Kunjappu, J.T., 1989 In-situ investigation of adsorbed surfactants and polymers on solids in solution Colloids and Surfaces 37 245268 10.1016/0166-6622(89)80123-4.CrossRefGoogle Scholar
Szántó, F. Dékány, I. Patzkó, and Várkonyi, B., 1986 Wetting, swelling and sediment volumes of organophilic clays Colloids and Surfaces A — Physicochemical and Engineering Aspects 18 359371.Google Scholar
Theng, B.K.G. Newman, R.H. and Whitton, J.S., 1998 Characterization of an alkylammonium-montmorillonite-phenanthrene intercalation complex by carbon-13 nuclear magnetic resonance spectroscopy Clay Minerals 33 221229 10.1180/000985598545589.CrossRefGoogle Scholar
Vaia, R.A. Teukolsky, R.K. and Giannelis, E.P., 1994 Interlayer structure and molecular environment of alkylammonium layered silicates Chemistry of Materials 6 10171022 10.1021/cm00043a025.CrossRefGoogle Scholar
Wang, L.Q. Liu, J. Exarhos, G.J. Flanigan, K.Y. and Bordia, R., 2000 Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR Journal of Physical Chemistry B 104 28102816 10.1021/jp993058c.CrossRefGoogle Scholar
Wu, J. Harwell, J.H. and O’Rear, E.A., 1987 Two-dimensional reaction solvents: surfactant bilayers in the formation of ultrathin films Langmuir 3 531537 10.1021/la00076a015.CrossRefGoogle Scholar
Xu, S.H. and Boyd, S.A., 1995 Cationic surfactant adsorption by swelling and nonswelling layer silicates Langmuir 11 25082514 10.1021/la00007a033.CrossRefGoogle Scholar
Xu, S.H. Sheng, G.Y. and Boyd, S.A., 1997 Use of organoclays in pollution abatement Advances in Agronomy 59 2562 10.1016/S0065-2113(08)60052-8.CrossRefGoogle Scholar
Yariv, S. and Cross, H., 2002 Organo-clay Complexes and Interactions New York Marcel Dekker.Google Scholar
Zhang, Z.Z. Sparks, D.L. and Scrivner, N.C., 1993 Sorption and desorption of quaternary amine cations on clays Environmental Science and Technology 27 16251631 10.1021/es00045a020.CrossRefGoogle Scholar
Zhu, J.X. He, H.P. Guo, J.G. Yang, D. and Xie, X.D., 2003 Arrangement models of alkylammonium cations in the interlayer of HDTMA+ pillared montmorillonites Chinese Science Bulletin 48 368372.Google Scholar
Zhu, L.Z. Chen, B.L. Tao, S. and Chiou, C.T., 2003 Interactions of organic contaminants with mineral-adsorbed surfactants Environmental Science and Technology 37 40014006 10.1021/es026326k.CrossRefGoogle ScholarPubMed
Zhu, J.X. He, H.P. Zhu, L.Z. Wen, X.Y. and Deng, F., 2005 Characterization of organic phases in the interlayer of montmorillonite using FTIR and C-13 NMR Journal of Colloid and Interface Science 286 239244 10.1016/j.jcis.2004.12.048.CrossRefGoogle Scholar