Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:05:40.512Z Has data issue: false hasContentIssue false

Mineralogical and Geochemical Properties of the Na- and Ca-Bentonites of Ordu (Ne Turkey)

Published online by Cambridge University Press:  01 January 2024

Muazzez Çelik Karakaya*
Affiliation:
Selçuk Universitesi Muh.-Mim. Fakültesi Jeoloji Mühendisliği Bölümü, Konya, 42079, Turkey
Necati Karakaya
Affiliation:
Selçuk Universitesi Muh.-Mim. Fakültesi Jeoloji Mühendisliği Bölümü, Konya, 42079, Turkey
Şuayip Küpeli
Affiliation:
Selçuk Universitesi Muh.-Mim. Fakültesi Jeoloji Mühendisliği Bölümü, Konya, 42079, Turkey
*
* E-mail address of corresponding author: mzzclk@hotmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A number of different types of bentonite deposits formed by hydrothermal alteration and diagenetic processes are to be found in the Ordu area of the Eastern Black Sea region. The Ca- and Na-bentonite deposits are related to Upper Cretaceous tholeitic to calc-alkaline volcanites, predominantly dacite and andesite, and also include rhyodacite with lesser basalt and their pyroclastic equivalents. In the present study, dacite (PR1), perlite (PR2), moderately altered rocks (MPR), and Na- and Ca-bentonites were studied to describe and compare their mineralogical and geochemical properties and their conditions of formation by means of X-ray diffraction, optical microscopy, scanning electron microscopy, and chemical analytical techniques.

Ca-bentonites, except for smectite, contain opal-CT, feldspar, biotite, and rarely pyrite, while Na-bentonites contain smectite and less feldspar, opal-CT, kaolinite, and illite.

Progressive alteration of the PR2 caused depletion in K2O and Na2O and enrichment in MgO and CaO in all of the Ca-bentonite samples. Na2O was depleted in all of the Na-bentonites and in most of the MPR. The medium and heavy rare earth elements (MREE and HREE) show mass gain or mass loss in the Na-bentonites. The HREE show nearly immobile behavior in the Ca-bentonites. The rare earth elements (REE) and transition elements (TRE) mostly gained mass in the Ca-bentonites in contrast to Na-bentonites. Large-ion lithophile elements (LILE) are strongly depleted in all of the bentonites. The LREE, MREE, and HREE were strongly depleted in most of the MPR samples. TiO2, Lu, Tm, and Tb show immobile behavior in all samples.

PR1 exhibits a slightly positive Eu anomaly. Two MPR samples show slightly positive Eu anomalies (1.03, 1.13), and one Na-bentonite sample displays a slightly positive Eu anomaly (1.04). Most of the Nabentonites have weakly negative Eu anomalies, whereas perlite and the Ca-bentonite have a strongly negative Eu anomaly. The PR1, PR2, MPR, and Na-bentonite present a positive Ce anomaly, and the Ca-bentonite shows a moderately negative Ce anomaly. The Ca-montmorillonites are mainly hydrothermal in origin and derived from alteration of volcanoclastic material in situ and/or in the subaerial environment. The Na-montmorillonites formed by alteration and diagenesis of volcanoclastic material in the sedimentary basin.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Arslan, M. and Abdioğlu, E., 2005 Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey Clay Minerals 40 131151 10.1180/0009855054010161.Google Scholar
Bau, M., 1991 Rare-earth element mobility during hydrothermal and metamorphic fluid—rock interaction and the significance of the oxidation state of europium Chemical Geology 93 219230 10.1016/0009-2541(91)90115-8.CrossRefGoogle Scholar
Boynton, W.V. and Henderson, P., 1984 Geochemistry of rare earth elements: meteorite studies Rare Earth Element Geochemistry Amsterdam Elsevier 63114 10.1016/B978-0-444-42148-7.50008-3.CrossRefGoogle Scholar
Braun, J.-J. Pagel, M. Muller, J.-P. Bilong, P. Michard, A. and Guillet, B., 1990 Cerium anomalies in lateriticprof iles Geochimica et Cosmochimica Acta 54 781795 10.1016/0016-7037(90)90373-S.CrossRefGoogle Scholar
Caballero, E. Jimanez de Cisneros, C. Huertas, F.J. Huertas, F. Poszzuoli, A. and Linares, J., 2005 Bentonites from Cabo de Gata, Almeria, Spain: a mineralogical and geochemical overview Clay Minerals 40 463480 10.1180/0009855054040184.CrossRefGoogle Scholar
Çağatay, M.N., 1993 Hydrothermal alteration associated with volcanogenic massive sulfide deposits Examples from Turkey. Economic Geology 88 606612 10.2113/gsecongeo.88.3.606.Google Scholar
Çelik, M. Karakaya, N. and Temel, A., 1999 Clay minerals in hydrothermally altered volcanic rocks, eastern Pontides, Turkey Clays and Clay Minerals 47 708717 10.1346/CCMN.1999.0470604.CrossRefGoogle Scholar
Chamley, H., 1989 Clay Sedimentology Berlin Springer 10.1007/978-3-642-85916-8.CrossRefGoogle Scholar
Christidis, G E, 1998 Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399 10.1346/CCMN.1998.0460403.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398 10.2113/gselements.5.2.93.CrossRefGoogle Scholar
Christidis, G. and Warren, D.H., 2009 Geologicas pects and genesis of bentonites Elements 5/2 9398 10.2113/gselements.5.2.93.CrossRefGoogle Scholar
Christidis, G.E. Scott, P.W. and Marcopoulos, T., 1995 Origin of the bentonite deposits of Eastern Milos, Aegean, Greece: geological, mineralogical and geochemical evidence Clays and Clay Minerals 43 6377 10.1346/CCMN.1995.0430108.CrossRefGoogle Scholar
Class, C. and la Roex, A.P., 2008 Ce anomalies in Gough Island lavas — trace element characteristics of a recycled sediment component Earth and Planetary Science Letters 265 475486 10.1016/j.epsl.2007.10.030.CrossRefGoogle Scholar
Corfu, F. and Davis, D.W., 1991 Comment on “Archaean hydrothermal zircon in the Abitibi greenstone belt: constraints on the timing of gold mineralization Earth and Planetary Science Letters 104 545552 10.1016/0012-821X(91)90229-B.CrossRefGoogle Scholar
Ddani, M. Meunier, A. Zahraoui, M. Beaufort, D. El Wartiti, M. Fontaine, C. Boukili, B. and El Mahi, B., 2005 Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (northeast Morocco) Clays and Clay Minerals 53 250267 10.1346/CCMN.2005.0530305.CrossRefGoogle Scholar
Finlow-Bates, T. and Stumpfl, E.F., 1981 The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits Mineralium Deposita 16 319328 10.1007/BF00202743.CrossRefGoogle Scholar
Florke, O.W. Martin, G.B. Bochum, R. and Wirth, R., 1991 Nomenclature of micro- and non-crystaline silica minerals, based on structure and microstructure Neues Jahrbuch für Mineralogie-Abhandlungen 163 1942.Google Scholar
Floyd, P.A. and Winchester, J.A., 1978 Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements Chemical Geology 21 291306 10.1016/0009-2541(78)90050-5.CrossRefGoogle Scholar
Gill, J.B., 1981 Orogenic Andesite and Plate Tectonics New York Springer 10.1007/978-3-642-68012-0.CrossRefGoogle Scholar
Gökçe, A. and Bozkaya, G., 2003 Fluid inclusion and stable isotope characteristics of the Inler Yaylası lead-zinc deposits, northern Turkey International Geology Review 45 10441054 10.2747/0020-6814.45.11.1044.CrossRefGoogle Scholar
Grim, R.E., 1968 Clay Mineralogy 2 New York McGraw- Hill.Google Scholar
Grim, R. and Güven, N., 1978 Bentonite: Geology, Mineralogy, Properties and Uses New York Elsevier.Google Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates Washington, D.C. Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Hopf, S., 1993 Behaviour of rare earth elements in geothermal systems of New Zealand Journal of Geochemical Exploration 47 333357 10.1016/0375-6742(93)90075-W.CrossRefGoogle Scholar
Hora, Z.D., 1998 Bentonite Geological Fieldwork 1997 24C124C3.Google Scholar
Hynes, A., 1980 Carbonatization and mobility of Ti, Y and Zr in Ascot Formation metabasalts, SE Quebec Contributions to Mineralogy and Petrology 75 7987 10.1007/BF00371891.CrossRefGoogle Scholar
Inoue, A. and Velde, B., 1995 Formation of clay minerals in hydrothermal environments Origin and Mineralogy of Clays Berlin Springer 268303 10.1007/978-3-662-12648-6_7.CrossRefGoogle Scholar
Inoue, A. Utada, M. and Kusakabe, H., 1984 Clay mineral composition and their exchangeable interlayer cation composition from altered rocks around the Kuroko deposits in the Matsumine-Shakanai-Matsuki area of the Hokuroku district Japan Journal of Clay Science Society Japan 24 6977.Google Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Jenner, G.A., Wyman, D.A., 1996 Trace element geochemistry of igneous rocks: geochemical nomenclature and analytical geochemistry Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration 5177.Google Scholar
Jiang, S.-Y., 2000 Controls on the mobility of high field strength elements (HFSE), U, and Th in an ancient submarine hydrothermal system of the Proterozoic Sullivan Pb-Zn-Ag deposit, British Columbia, Canada Geochemistry Journal 34 341348.Google Scholar
Jiang, N. Sun, S. Chu, X. Mizuta, T. and Ishiyama, D., 2003 Mobilization and enrichment of high-field strength elements during late- and post-magmaticp rocesses in the Shuiquangou syenitic complex, Northern China Chemical Geology 200 117128 10.1016/S0009-2541(03)00162-1.CrossRefGoogle Scholar
Jiang, S.Y. Wang, R.C. Xu, X.S. and Zhao, K.D., 2005 Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems Physics and Chemistry of the Earth 30 10201029 10.1016/j.pce.2004.11.004.CrossRefGoogle Scholar
Karakaya, N. and Karakaya, M.C., 2001 Hydrothermal alteration of the Şaplıca volcanic rocks, Şebinkarahisar, Turkey International Geology Review 43 953962 10.1080/00206810109465059.CrossRefGoogle Scholar
Karakaya, N. and Karakaya, M.C., 2001 Mineralogic and geochemical properties of hydrothermal alteration types of Şaplıca (Şebinkarahisar, Giresun) volcanites Geological Bulletin of Turkey 44 7589.Google Scholar
Karakaya, M. Karakaya, N. and Ekmekçi, M., 2005 Doğu Karadeniz Bölgesindeki Bazı Maden Yatakları ile Yüzey ve Yeraltısuyu Kimyası Arasındaki İlişkinin Araştırılması .Google Scholar
Karakaya, N. Karakaya, M.C. Nalbantcçılar, M.T. and Yavuz, F., 2007 Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey) Journal of Geochemical Exploration 93 3546 10.1016/j.gexplo.2006.08.012.CrossRefGoogle Scholar
Keskin, Yergök, F.A. Kara, H. Dönmez, M. and Arslan, M., 1998 Ünye-Fatsa-Kumru-Korgan (Ordu) dolayının jeolojisi MTA Raport 10182 .Google Scholar
Ketin, I., 1966 Tectonic units of Anatolia Bulletin of Mineral Research and Exploration 66 2334.Google Scholar
Lewis, A.J. Palmer, M.P.R. Sturchio, N.C. and Kemp, A.J., 1997 The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA Geochimica et Cosmochimica Acta 61 695706 10.1016/S0016-7037(96)00384-5.CrossRefGoogle Scholar
Lombardi, B. Baschini, M. and Torres Sánchez, R.M., 2003 Bentonite deposits of Northern Patagonia Applied Clay Science 22 6 309312 10.1016/S0169-1317(03)00121-2.CrossRefGoogle Scholar
MacLean, W.H., 1990 Mass change calculations in altered rock series Mineralium Deposita 25 4449 10.1007/BF03326382.CrossRefGoogle Scholar
MacLean, W.H. and Kranidiotis, P., 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration. Phelps Dodge massive sulfide deposits, Matagami, Quebec Economic Geology 82 951962 10.2113/gsecongeo.82.4.951.CrossRefGoogle Scholar
Millot, G., 1970 Geology of Clays Berlin, New York Springer 10.1007/978-3-662-41609-9.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2nd edition New York Oxford University Press.Google Scholar
Murphy, J.B. and Hynes, A., 1986 Contrasting secondary mobility of Ti, P, Zr, Nb and Y in two metabasalticsu ites in the Appalachians Canadian Journal of Earth Sciences 23 11381144 10.1139/e86-112.CrossRefGoogle Scholar
Münch, P. Duplay, J. and Cochemé, J.-J., 1996 Alteration of silicic vitric tuffs interbedded in volcaniclastic deposits of the Southern Basin and Range Province, Mexico; evidences for hydrothermal reactions Clays and Clay Minerals 44 4967 10.1346/CCMN.1996.0440105.CrossRefGoogle Scholar
Patino, L.C. Velbel, M.P.R. Price, J.R. and Wade, J.A., 2003 Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala Chemical Geology 202 343364 10.1016/j.chemgeo.2003.01.002.CrossRefGoogle Scholar
Pearce, J.A. and Cann, J.R., 1973 Tectonic setting of basic volcanic rocks determined using trace element analyses Earth and Planetary Science Letters 19 290300 10.1016/0012-821X(73)90129-5.CrossRefGoogle Scholar
Rollinson, H., 1993 Using Geochemical Data; Evaluation, Presentation, Interpretation Essex, UK Longman Scientific and Technical, Harlow.Google Scholar
Ronov, A.B. Balashov, Y.A. and Migdisov, A.A., 1967 Geochemistry of the rare-earths in the sedimentary cycle Geochemistry International 4 117.Google Scholar
Rubin, J.N. Henry, C.D. and Price, J.G., 1993 The mobility of zirconium and othe ‘immobile’ elements during hydrothermal alteration Chemical Geology 110 2947 10.1016/0009-2541(93)90246-F.CrossRefGoogle Scholar
Salvi, S. and Williams-Jones, A.E., 1996 The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada Geochimica et Cosmochimica Acta 60 19171932 10.1016/0016-7037(96)00071-3.CrossRefGoogle Scholar
Salvi, S. Fontan, F. Monchoux, P. Williams-Jones, A.E. and Moine, B., 2000 Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght Complex (Morocco) Economic Geology 95 559576.Google Scholar
Saunders, A.D. Tarney, J. Marsh, N.G. Wood, D.A. and Panayiotou, A., 1980 Ophiolites as ocean crust: a geochemical approach Ophiolites: Proceedings of the International Ophiolite Symposium Cyprus Ministry of Agriculture and Natural Resources 193204.Google Scholar
Schilling, J.G., 1973 Iceland Mantle Plume: geochemical study of Reykjanes ridge Nature 242 565571 10.1038/242565a0.CrossRefGoogle Scholar
Senkai, A.L. Dixon, J.B. Hossner, L.R. Abder-Ruhman, M. and Fanning, D.S., 1984 Mineralogy and geneticrelat ionships of tonstein, bentonite, and lignite strata in the Eocene Yegua Formation of east-central Texas Clays and Clay Minerals 32 259271 10.1346/CCMN.1984.0320403.CrossRefGoogle Scholar
Shirozu, H. and Iwasaki, T., 1980 Clay minerals in alteration zones of Kuroko deposits, with special reference to montmorillonite Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists 115121.Google Scholar
Sun, S.S. McDonough, W.F., Saunders, A.D. Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition processes Magmatism in the Ocean Basins London Geological Society 313345.Google Scholar
Sverjensky, D.A., 1984 Europium redox equilibrium in aqueous solution Earth and Planetary Science Letters 67 7078 10.1016/0012-821X(84)90039-6.CrossRefGoogle Scholar
Terkado, Y. and Fujitani, T., 1998 Behavior of rare earth elements and other trace elements during interactionsbetween acidic hydrothermal solutions and silicic volcanicrocks, southwestern Japan Geochimica et Cosmochimica Acta 62 19031917 10.1016/S0016-7037(98)00109-4.CrossRefGoogle Scholar
Torres-Alvarado, I.S. Pandarinath, K. Verma, S.P. and Dulski, P., 2007 Mineralogical and geochemical effects due to hydrothermal alteration in the Los Azures geothermal field, Mexico Revista Mexicana De Ciencias Geologicas 24 1524.Google Scholar
Velde, B., 1985 Clay Minerals: A Physico-Chemical Explanation of their Occurrence Amsterdam Elsevier.Google Scholar
Weaver, C.E., 1989 Clays, Muds, and Shales Amsterdam Elsevier.Google Scholar
Weaver, C.E. and Pollard, L.D., 1973 The Chemistry of Clay Minerals Amsterdam Developments in Sedimentology, Elsevier Science Publishing.Google Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187 10.2138/am.2010.3371.CrossRefGoogle Scholar
Wilson, M.J. and Wilson, M.J., 1987 X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie and Sons Ltd 2698.Google Scholar
Winchester, J.A. and Floyd, P.A., 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 245252 10.1016/0009-2541(77)90057-2.CrossRefGoogle Scholar
Wise, S.W. and Kelts, K.R., 1972 Inferred diagenetichi story of a weakly silicified deep sea chalk Transactions of the Gulf Coast Association of Geological Societies 22 177203.Google Scholar
Yalçın, H. and Gümüşer, G., 2000 Mineralogical and geochemical characteristics of Late Cretaceous bentonite deposits of the Kelkit Valley Region, Northern Turkey Clay Minerals 35 807825 10.1180/000985500547250.CrossRefGoogle Scholar
Yıldız, A. and Dumlupınar, , 2009 Mineralogy and geochemical affinities of bentonites from Kapıkaya (Eskişehir, western Turkey) Clay Minerals 44 339360 10.1180/claymin.2009.044.3.339.CrossRefGoogle Scholar
Yılmaz, Y. Tüysüz, O. Yiğitbaş, E. Gencç, C. Şengör, A.M.C. and Robinson, A., 1997 Geology and tectonic evolution of the Pontides Regional and Petroleum Geology of the Black Sea and Surrounding Region Tulsa, Oklahoma American Association of Petroleum Geologists 183226.Google Scholar
Zielinski, R.A., 1982 The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: a case study in the Troublesome Formation, Colorado, U.S.A Chemical Geology 35 185204 10.1016/0009-2541(82)90001-8.CrossRefGoogle Scholar