Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:28:10.243Z Has data issue: false hasContentIssue false

Mineralogy, Geochemistry, and Genesis of Sepiolite and Palygorskite in Neogene Lacustrine Sediments, Eskişehir Province, West Central Anatolia, Turkey

Published online by Cambridge University Press:  01 January 2024

Selahattin Kadir*
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
Hülya Erkoyun
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
Muhsin Eren
Affiliation:
Department of Geological Engineering, Mersin University, TR-33343, Mersin, Turkey
Jennifer Huggett
Affiliation:
Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Nergis Önalgil
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
*
*E-mail address of corresponding author: skadir_esogu@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sepiolite and palygorskite are common as layers and nodules in the Neogene lacustrine sediments of the Eskişehir area. This study aims to determine their mineralogical and geochemical characteristics, plus the distribution of these economically important sepiolite and palygorskite deposits within the lacustrine environment. Using these data the research goes on to discuss the environmental conditions for their formation. Sepiolite and palygorskite layers are associated with dolomite, marlstone, and argillaceous limestone. The sepiolite nodules (meerschaum), which are former magnesite gravels, are observed in the Upper Miocene reddish-brown fluvial deposits derived from the ophiolite and its fractureinfills at the northern margin of the basin. Sepiolite and palygorskite are only sparsely associated with dolomite and accessory magnesite, quartz, feldspar, and amphibole. Sepiolite and palygorskite fibers formed as oriented platy fan, interwoven, and knitted aggregates in the absence of dolomite indicated precipitation from supersaturated solution. Sepiolite and palygorskite fibers edging dolomite crystals postdate dolomite and formed through precipitation in a vadose environment under semi-arid to arid climatic conditions. High values of Mg+Fe+Ni and enrichment of light rare earth elements (LREE) relative to middle rare earth elements (MREE) and heavy rare earth elements (HREE), Sr content, depletion of Rb+Ba and K, and negligible negative Eu anomalies all reflect the derivation from the Paleozoic metamorphic and Upper Cretaceous ophiolitic rocks. Locally, Upper Miocene to Lower Pliocene volcanic, volcanoclastic, and fluvio-lacustrine sedimentary rocks supplied the required Si, Mg, Al, and Fe for precipitation of Al-sepiolite and Mg-palygorskite with average structural formulae of Si11.91Al0.09O30Mg6.60Al0.78Fe0.13 (OH)4Na0.12K0.06(OH2)4·nH2O and Si7.74Al0.26O20Mg2.52Al1.13Fe0.38(OH)2(OH2)4Na0.32K0.14 Ca0.12·nH2O, respectively. In contrast to the layered sepiolites, the absence of Al and high Ni content in sepiolite nodules suggest formation through replacement of magnesite gravels at shallow burial in an alkal ine environment. The calculated meerschaum sepiol ite chemical formula i s: Si12.02O30Mg7.87Fe0.01(OH)4Na0.13K0.03(OH2)4·nH2O.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

References

Akbulut, A. and Kadir, S., 2003 The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acıpayam basin, Denizli, SW Turkey Clays and Clay Minerals 51 279292.CrossRefGoogle Scholar
Akıncı, , 1967 Eskişehir İ24 c1 paftasının jeolojisi ve tabakalı lúletaşı zuhurları MTA Enstitúsú Dergisi 68 8297.Google Scholar
Argast, S., 1989 Expandable sepiolite from Ninetyeast Ridge, Indian Ocean Clays and Clay Minerals 37 371376.CrossRefGoogle Scholar
Bilgen, A.N., 2006 Çavlum Orta Tunç Çağı Nekropolú’nde ele geçen lúletaşı mühür Elektronik Sosyal Bilimler Dergisi 16 1721.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification 411438.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T.K., 1963 The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4352.CrossRefGoogle Scholar
Colson, J. Cojan, I. and Thiry, M., 1998 A hydrogeological model for palygorskite formation in the Danian continental facies of the Provence Basin (France) Clay Minerals 33 333347.CrossRefGoogle Scholar
Craig, H., 1961 Isotopic variations in meteoric waters Science 33 17021703.CrossRefGoogle Scholar
Ece, Ó.I., 1998 Diagenetic transformation of magnesite pebbles and cobbles to sepiolite (Meerschaum) in Eskişehir lacustrine basin, Turkey Clays and Clay Minerals 46 436445.CrossRefGoogle Scholar
Ece, Ó.I. and Çoban, F., 1994 Geology, occurrence, and genesis of Eskis-ehir sepiolites, Turkey Clays and Clay Minerals 42 8192.CrossRefGoogle Scholar
Eren, M., Kadir, S., Hatipoğlu, Z., and Gúl, M. (2004) Caliche development in Mersin area. TÚBİTAK Project, No.102Y036,136 pp. (In Turkish with English abstract).Google Scholar
Eren, M. Kadir, S. Hatipoğlu, Z. and Gu’l, M., 2008 Quaternary calcrete development in the Mersin area, southern Turkey Turkish Journal of Earth Sciences 17 763784.Google Scholar
Faure, G., 1986 Principles of Isotope Geology 2nd edition New York John Wiley & Sons 589.Google Scholar
Fukushima, Y. and Shimosaka, K. (1987) Sepiolite deposit in central Anatolia, Turkey. Summaries — Proceedings of the 6th Meeting of the European Clay Groups, Sevilla, pp. 226228.Google Scholar
Galán, E. and Carretero, M.I., 1999 A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409.CrossRefGoogle Scholar
Galán, E. and Ferrero, A., 1982 Palygorskite-sepiolite clays of Lebrija, southern Spain Clays and Clay Minerals 30 191199.CrossRefGoogle Scholar
Galán, E. Pozo, M., Galán, E. and Singer, E., 2011 Palygorskite and sepiolite deposits in continental environments. Description, Genetic Patterns and Sedimentary Settings Developments in Palygorskite-Sepiolite Research. A New Outlook on these Nanomaterials Amsterdam Elsevier 125173.CrossRefGoogle Scholar
Garcia-Romero, E. Suárez Barrios, M. and Bustillo Revuelta, A., 2004 Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain) Clays and Clay Minerals 52 484494.CrossRefGoogle Scholar
Garcia-Romero, E. and Suárez, M., 2010 On the chemical composition of sepiolite and palygorskite Clays and Clay Minerals 58 120.CrossRefGoogle Scholar
Gençoğu, H. (1996) Eskis-ehir-Sivrihisar-Oğlakç. kóyú sepiyolit sahasına ait maden jeolojisi. MTA Raport No. 9858, Ankara, 33s (unpublished).Google Scholar
Gózler, M.Z., Cevher, F., Ergúl, E., and Asutay, H.J. (1996) Orta Sakarya ve güneyinin jeolojisi, Mineral Research and Exploration (MTA) Raport No. 9973 (unpublished).Google Scholar
İrkeç, T., 1987 General geological setting and character of Turkish sepiolite deposits Acta Mineralogica-Petrographica XXIX 95106.Google Scholar
İrkeç, T. and Gençoǿlu, H. (1993) Eskişehir, Sivrihisar, Sıǿırcık, Kurtşeyh kóyleri ÓIR 5342 Nolu sepiyolit sahasına ait maden raporu. MTA Raport No. 9727.Google Scholar
İrkeç, T. and Únlú, T., 1993 An example to sepiolite formation in volcanic belts by hydrothermal alteration: K.briscik (Bolu) sepiolite occurrence Bulletin of the Mineral Research and Exploration 115 4968.Google Scholar
ITIT (1993) Utilization of sepiolitic and Mg-bearing clays in Turkey. MTA/Turkey-GIRIN/Japan Joint Research Project Final Report, ITIT Roject No. 90-1-5, 314 pp.Google Scholar
Jones, B.F. Galán, E., Bailey, S.W., 1988 Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) Virginia, USA. Mineralogical Society of America, Chantilly 631–374.Google Scholar
Kadir, S. and Eren, M., 2008 The occurrence and genesis of clay minerals associated with Quaternary caliches in the Mersin area, southern Turkey Clays and Clay Minerals 56 244258.CrossRefGoogle Scholar
Kadir, S. and Erkoyun, H., 2015 Characterization and distribution of fibrous tremolite and chrysotile minerals in the Eskis-ehir region of western Turkey Clay Minerals 50 441458.CrossRefGoogle Scholar
Kadir, S. Baş, H. and Karakaş, Z., 2002 Origin of sepiolite and loughlinite in a Neogene volcano-sedimentary lacustrine environment, Mihalıççık-Eskişehir, Turkey The Canadian Mineralogist 40 10911102.CrossRefGoogle Scholar
Kadir, S. Eren, M. and Atabey, E., 2010 Dolocretes and associated palygorskite occurrences in siliciclastic red mudstones of the Sariyer formation (Middle Miocene), southeastern side of the Çanakkale strait, Turkey Clays and Clay Minerals 58 205219.CrossRefGoogle Scholar
Kaplan, M.Y. Eren, M. Kadir, S. Kapur, S. and Huggett, J., 2014 A microscopic approach to the pedogenic formation of palygorskite associated with Quaternary calcretes of the Adana area, southern Turkey Turkish Journal of Earth Sciences 23 559574.CrossRefGoogle Scholar
Karakaş, S.Z. (1992) Ballıhisar-İlyaspaşa (Sivrihisar-Eskişehir gúneyi) yóresinin jeolojik, petrografik ve mineralojik incelenmesi. Ankara Úniversitesi Fen Bilim. Enstitúsú Doktora Tezi, Ankara, 184s (unpublished).Google Scholar
Karakaya, N. Karakaya, M. Temel, A. Kúpeli, and Tunoğlu, C., 2004 Mineralogical and chemical characterization of sepiolite occurrences at Karap.nar (Konya basin, Turkey) Clays and Clay Minerals 52 495509.CrossRefGoogle Scholar
Karakaya, M. Karakaya, N. and Temel, A., 2011 Mineralogical and geochemical chartacteristics and genesis of the sepiolite deposits at Polatı basin (Ankara, Turkey) Clays and Clay Minerals 59 286314.CrossRefGoogle Scholar
Konak, N. (2002) 1/500,000 scale geological map of Turkey — İzmir, General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Kulaksız, S., 1981 Sivrihisar KB sının jeolojisi Hacettepe Úniversitesi Yerbilimleri Dergisi 8 103124.Google Scholar
Lawrence, J.R. Taylor, H.P. Jr., 1971 Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soil compaired to meteoric waters Geochimica et Cosmochimica Acta 35 9931003.CrossRefGoogle Scholar
Lawrence, J.R. Taylor, H.P. Jr., 1972 Hydrogen and oxygen isotope systematics in weathering profiles Geochimica et Cosmochimica 36 13771393.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 332.Google Scholar
Newman, A.C.D. Brown, G., Newman, A.C.D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Óncel, Z. and Denizci, F. (1982) Eskişehir bólgesi lúletaşı ve magnezit etúdleri raporu. MTA raport No. 7181, Ankara, 3 V.Google Scholar
Ózbaş, Ú. (2008) Túrkiye’deki farklı sepiyolit-paligorskit oluşumlarının kókeni ve diyajenetik evrimi. Dokuz Eylúl Úniversitesi Fen Bilimleri Enstitúsú Doktora Tezi, 239 s.Google Scholar
Post, J.L., 1978 Sepiolite deposits of the Las Vegas, Nevada area Clays and Clay Minerals 26 5864.CrossRefGoogle Scholar
Post, J.L. and Crawford, S., 2007 Varied forms of palygorskite and sepiolite from different geologic systems Applied Clay Science 36 232244.CrossRefGoogle Scholar
Pozo, M. and Casas, J.C., 1999 Origin of kerolite and associated Mg clay in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain) Clay Minerals 34 395418.CrossRefGoogle Scholar
Rodas, M. Luque, F.J. Mas, R. and Garzon, M.G., 1994 Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Dueo and Tajo Basins,central Spain Clay Minerals 29 273285.CrossRefGoogle Scholar
Saraç, C. İrkeç, T. Gençoğlu, H. and Tercan, A.E., 1996 Veletler Sırtı/ Kurtşeyh (Sivrihisar, Eskişehir) sepiyolit cevherleşmesinin rezerv-ten’or değerlendirilmesi Jeoloji Múhendisliği 49 2334.Google Scholar
Sarıiz, K., 2000 The geology, mineralogy, and occurrence of bedded sepiolite deposits in the Akçayır-Yúrúkakçayır (Eskişehir) lacustrine basin, central Turkey Expolaration and Mining Geology 9 265275.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542.CrossRefGoogle Scholar
Şengór, A.M.C. and Yılmaz, Y., 1981 Tethyan evolution of Turkey: a plate tectonic approach Tectonophysics 75 181241.CrossRefGoogle Scholar
Şengór, A.M.C. Górúr, N. Şaroğlu, F., Biddle, K.T. and Christie-Blick, N., 1985 Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study Strike-Slip Deformation, Basin Formation and Sedimentation Tulsa, Oklahoma, USA Society of Economic Paleontologists and Mineralogists 227264.CrossRefGoogle Scholar
Shadfan, H. Mashhady, A.S. Dixon, J.B. and Hussen, A.A., 1985 Palygorskite from Tertiary formations of eastern Saudi Arabia Clays and Clay Minerals 33 451457.CrossRefGoogle Scholar
Sheppard, S.M.F., Valley, J.W. Taylor, H.P. and O’Neil, J.R., 1986 Characterization and isotopic variations in natural waters Stable Isotopes in High Temperature Geological Processes Virginia, USA Mineralogical Society of America, Chantilly 141162.Google Scholar
Sheppard, S.M.F. Nielsen, R.L. and Taylor, H.P., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 64 755777.CrossRefGoogle Scholar
Singer, A., 1979 Palygorskite in sediments: detrital, diagenetic, or neoformed — a critical review Geologische Rundschau 68 9961008.CrossRefGoogle Scholar
Singer, A., Singer, A. and Galán, E., 1984 Pedogenic palygorskite in the arid environment Palygorskite-Sepiolite Occurrence, Genesis and Uses Amsterdam Elsevier 169176.Google Scholar
Singer, A., Dixon, J.B. and Weed, S.B., 1989 Palygorskite and sepiolite group minerals Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 829872.Google Scholar
Singer, A. and Norrish, K., 1974 Pedogenic palygorskite occurrences in Australia American Mineralogist 59 508517.Google Scholar
Suárez, M. Garcia-Romero, E., Galán, E. and Singer, E., 2011 Advances in the crystal chemistry of sepiolite and palygorskite Developments in Palygorskite-Sepiolite Research. A New Outlook on these Nanomaterials Amsterdam Elsevier 3365.CrossRefGoogle Scholar
Suárez, M. and Garcia-Romero, E., 2013 Sepiolite-palygorskite: a continuous polysomatic series Clays and Clay Minerals 61 461472.CrossRefGoogle Scholar
Suárez, M. Robert, M. Elsass, F. and Martin-Pozas, J.M., 1994 Evidence of a precursor in the neoformation of palygorskite - New data by analytical electron microscopy Clay Minerals 29 255264.CrossRefGoogle Scholar
Sun, S.S. McDonough, W.F., Saunders, A.D. and Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes Magmatism in the Ocean Basins London Geological Society 313345.Google Scholar
Taylor, H.P., 1974 The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Economic Geology 69 843883.CrossRefGoogle Scholar
Taylor, H.P., Barnes, H.L., 1979 Oxygen and hydrogen relationships in hydrothermal mineral deposits Geochemistry of Hydrothermal Ore Deposits 2nd edition New York Wiley 236277.Google Scholar
Turhan, N. (2002) 1/500,000 scale geological map of Turkey — Ankara, General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Webster, D.M. Jones, B.F., Renault, R.W. and Last, W.M., 1994 Paleoenvironmental implications of lacustrine clay minerals from the Double Lakes Formation, Southern High Plains, Texas Sedimentology and Geochemistry of Modern and Ancient Saline Lakes Tulsa, Oklahoma, USA SEPM-Society for Sedimentary Geology 159168.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W., 2010 Abbreviations for names of rock-forming minerals American Mineralogist 95 185187.CrossRefGoogle Scholar
Wright, V.P., 1984 Peritidal carbonate facies models: A review Geological Journal 19 309325.CrossRefGoogle Scholar
Yeniyol, M., 1986 Vein-like sepiolite occurrence as a replacement of magnesite in Konya, Turkey Clays and Clay Minerals 34 353356.CrossRefGoogle Scholar
Yeniyol, M., 1992 Geology, mineralogy and genesis of the Yenidogan (Sivrihisar) sepiolite deposit Mineral Research and Exploration Bulletin of Turkey 114 7184.Google Scholar
Yeniyol, M., 1993 Meerschaum sepiolite and palygorskite in central Anatolia 10th International Clay Conference 378382.Google Scholar
Yeniyol, M., 2007 Characterization of a Mg-rich and lowcharge saponite from the Neogene lacustrine basin of Eskis-ehir, Turkey Clay Minerals 42 541548.CrossRefGoogle Scholar
Yeniyol, M., 2012 Geology and mineralogy of a sepiolitepalygorskite occurrence from SW Eskis-ehir (Turkey) Clay Minerals 47 93104.CrossRefGoogle Scholar
Yeniyol, M., 2014 Characterization of two forms of sepiolite and related Mg-rich clay minerals from Yenidoǿan (Sivrihisar, Turkey) Clay Minerals 49 91108.CrossRefGoogle Scholar
Yeniyol, M. Óztunalı, , 1985 Yunak sepiyolitinin mineralojisi ve oluşumu 2. Ulusal Kil Sempozyumu 171186.Google Scholar
Yılmaz, Y., 1981 Sakarya kıtası gúney kenarının tektonik evrimi Yerbilimleri 1 3352.Google Scholar
Yüce, G., Italiano, F., Taskiran, L., Yasin, D., and Gulbay, A.H. (2015) Hydrogeochemical characteristics of low-enthalpy geothermal waters from Eskisehir Province (Turkey). Proceedings World Geothermal Congress Melbourne, Australia, 113.Google Scholar