Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T12:02:55.923Z Has data issue: false hasContentIssue false

Mineralogy, Geochemistry, and Origin of the Underclays of the Central Coal Basin, Asturias, Spain

Published online by Cambridge University Press:  02 April 2024

Olga Elvira Alonso
Affiliation:
Departemente de Geología, Universidad de Oviedo, Arias de Velasco s/n, 33005 Oviedo, Spain
Covadonga Brime
Affiliation:
Departemente de Geología, Universidad de Oviedo, Arias de Velasco s/n, 33005 Oviedo, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Samples of underclays corresponding to nine different coal beds of the María Luisa coal seam in the Aller valley (Asturias, Spain) were collected to determine whether their mineralogy and geochemistry could be used for correlation. The underclays are dominated by illite, with an average abundance of 46%, and contain smaller amounts of chlorite, kaolinite (chlorite always more abundant), paragonite, pyrophyllite, mixed-layer illite/smectite (I/S), and mixed-layer muscovite/paragonite. This mineralogical association along with the illite “crystallinity” values (mean values of “crystallinity” in air-dried and ethylene glycol-solvated illite are 0.48° and 0.35°2θ, respectively) suggest that the samples have undergone very low-grade metamorphism. No consistent variation in the mineral components with increasing depth below the coal was noted. The presence of chlorite and K-feldspar precludes the development of the underclays by extensive leaching by acid swamp waters and thereby suggests that their mineral composition was determined largely by provenance.

Thirty-seven mineralogical and geochemical variables were treated by stepwise discriminant analysis. The variables that best served as discriminators between the underclays were: illite + I/S contents of both the whole rock and clay fraction, illite “crystallinity” of the clay fraction in both air-dried and glycolated patterns, pH of the samples, and the elements (in order of atomic number) Na, Al, K, Ca, Ti, V, Sr, Zr, Nb, Ba. The Molino underclay is clearly distinct from the other eight underclays, suggesting its potential use in regional correlation.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Aller, J., Brime, C., Escobedo, J. L., Granados, L. F., Meléndez, B., Pignatelli, R., Rey, R. and Wagner, R. H., 1985 Deformación y metamorfismo en la parte sur de la Cuenca Carbonifera Central (NO. de España) C.R. X Congr. Int. Strat. Geol. Carb., Madrid, 1983, Vol. 3 Madrid Instituto Geológico y Minero de España 541548.Google Scholar
Barrois, C., 1882 Recherches sur les terrains des Asturies et de la Galice Mém. Soc. Géol. Nord 2 1630.Google Scholar
Brime, C., 1981 Preparación de los agregados orientados de arcillas para su estudio mediante difracción de rayos X Brev. Geol. Astúrica 25 1316.Google Scholar
Brime, C., 1985 A diagenesis to metamorphism transition in the Hercynian of north-west Spain Mineral. Mag 49 481484.CrossRefGoogle Scholar
Brime, C. and Perez-Estaûn, A., 1980 La transition diagénesis-metamorfismo en la región del Cabo Penas Cua-dernos do Lab. Xeolóxico de Laxe 1 8597.Google Scholar
Dunoyer de Segonzac, G. (1969) Les mineraux argileux dans la diagenèse-passage au métamorphisme: Mém. Serv. Carte Géol. Alsace Lorraine 29, 303 pp.Google Scholar
Ezquerra del Bayo, J., 1841 Datos sobre la estadîstica minera de España en 1939 recogidos de las inspecciones de minas: Asturias y Galicia Anal. Min 2 331334.Google Scholar
Frey, M., 1969 A mixed-layer paragonite/phengite of low-grade metamorphic origin Contr. Miner. Petrol 24 6365.CrossRefGoogle Scholar
Frey, M., 1970 The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis Sedimentology 15 261279.CrossRefGoogle Scholar
Frey, M. and Frey, M., 1987 Very low-grade metamorphism of clastic sedimentary rocks Low Temperature Metamorphism Glasgow Blackie and Sons 958.Google Scholar
Frey, M., Teichmüller, M., Teichmüller, R., Mullis, J., Künzi, B., Breitschmid, A., Gruner, U. and Schwizer, B., 1980 Very low grade metamorphism in external parts of Central Alps: Mite “crystallinity”, coal rank and fluid inclusion data Eclogae Geol. Helv 73 173203.Google Scholar
Grim, R. E. and Allen, V. T., 1938 Petrology of the Penn-sylvanian underclays of Illinois Geol. Soc. Am. Bull 49 14851514.CrossRefGoogle Scholar
Hower, J. and Long-sataffe, F. J., 1981 X-ray identification of mixed-layer clay minerals Clays and the Resource Geologist Canada, Calgary, Alberta Miner. Assoc. 3559.Google Scholar
Huddle, J. W. and Patterson, S. H., 1961 Origin of Penn-sylvanian underclays and related seat rocks Geol. Soc. Amer. Bull 72 16431660.CrossRefGoogle Scholar
Hughes, R. E., DeMaris, P. J., White, A., Cowin, D. K., Schultz, L. G., van Olphen, H. and Mumpton, F. A., 1987 Origin of clay minerals in Pennsylvanian strata of Illinois Basin Proc. Int. Clay Conf., Denver, 1985 Bloomington, Indiana The Clay Minerals Society 97104.Google Scholar
Jennrich, R., Sampson, P., Dixon, W. J., Brown, M. B., Engelman, L., Friene, J. W., Hill, M. H., Jennrich, R. I. and Toporek, J. D., 1983 Stepwise discriminant analysis BMDP Statistical Software Berkeley, California University of California Press 519537.Google Scholar
Kisch, H., Larsen, G. and Chilingar, G. V., 1983 Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks Diagenesis in Sediments and Sedimentary Rocks, Vol. 2 289493.CrossRefGoogle Scholar
Kisch, H. and Frey, M., 1987 Correlation between indicators of very low-grade metamorphism Low Temperature Metamorphism Glasgow Blackie and Sons 301304.Google Scholar
Kisch, H., Frey, M. and Frey, M., 1987 Appendix: Effect of sample preparation on the measured 10Å peak width of illite (illite “crystallinity”) Low Temperature Metamorphism Glasgow Blackie and Sons 301304.Google Scholar
Kubler, B., 1964 Les argiles, indicateurs de métamorphisme Rev. Inst. Franc. Pétrol 19 10931112.Google Scholar
Kubler, B., 1967 Anchimetamorphism et schistosité Bull. Centre Rech. Pau-SNPA 1 259278.Google Scholar
Nieto, F., Martin Ramos, J. D., Lopez Aguayo, F. and Rodriguez Gallego, M., 1983 Relación entre las intensidades de las reflexiones basales y el contenido y distributión de átomos pesados en cloritas Cuader. Geol 11 3140.Google Scholar
Odom, I. E. and Parham, W. E. (1968) Petrography of Pennsylvanian underclays in Illinois and their application to some mineral industries: Illinois State Geol. Surv. Circ. 429, 36 pp.Google Scholar
Persoz, F. and Remane, J., 1976 Minéralogie et géochimie des formations à la limite Jurassique-Crétacé dans le Jura et le Bassin vocontien Eclogae Geol. Helv 69 138.Google Scholar
Reynolds, R. C., 1980 Quantitative analysis of kaolinite, illite and mixed layered illite/smectite by X-ray diffraction methods Prog. Abstracts, 29th Ann. Clay Conf., Urbana, Illinois 83.Google Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed-layer illite-montmorillonite Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Rimmer, S. M. and Eberl, D. D., 1982 Origin of an un-derclay as revealed by vertical variations in mineralogy and chemistry Clays & Clay Minerals 30 422430.CrossRefGoogle Scholar
Schultz, L. G., 1958 Petrology of underclays Geol. Soc. Amer. Bull 69 363402.CrossRefGoogle Scholar
Schultz, L. G., Swineford, A. and New York, P. P., 1960 Quantitative X-ray determination of some aluminous clay minerals in rocks Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958 216224.CrossRefGoogle Scholar
Schultz, L. G. (1964) Quantitative interpretation of min-eralogical composition from X-ray and chemical data for the Pierre Shale: U.S. Geol. Surv. Prof Pap. 391–C, 31 pp.Google Scholar
Schulz, G., 1837 Note sur la géologie des Asturies Bull. Soc. Géol. Fr 8 325328.Google Scholar
Schulz, G., 1858 Descriptión Geológica de la Provincia de Oviedo Madrid GrÅficas Reunidas.Google Scholar
Wilson, M. J., 1965 The origin and geological significance of the South Wales underclays J. Sedim. Petrol 35 9199.CrossRefGoogle Scholar