Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T21:56:28.691Z Has data issue: false hasContentIssue false

Molecular Simulations of Montmorillonite Intercalated with Aluminum Complex Cations. Part II: Intercalation with Al(OH)3-Fragment Polymers

Published online by Cambridge University Press:  28 February 2024

P. Čapková
Affiliation:
Laboratory of Crystallography, AIMS, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands Faculty of Mathematics and Physics, Charles University Prague, Ke Karlovu 5, 12116 Prague, Czech Republic
R. A. J. Driessen
Affiliation:
Laboratory of Crystallography, AIMS, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
M. Numan
Affiliation:
Laboratory of Crystallography, AIMS, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
H. Schenk
Affiliation:
Laboratory of Crystallography, AIMS, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
Z. Weiss
Affiliation:
Central Analytical Laboratory, Technical University Ostrava, 70833 Ostrava, Czech Republic
Z. Klika
Affiliation:
Central Analytical Laboratory, Technical University Ostrava, 70833 Ostrava, Czech Republic
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Crystal Packer module in the Cerius2 modeling environment has been used to study the structure of montmorillonite intercalated with Al(OH)3-fragment (gibbsite-like) polymers. Basal spacings in gibbsite-like polymers arranged in 2 layers in the interlayer of montmorillonite varied in the range 19.54–20.13 Å, depending on the type and arrangement of Al(OH)3 fragments. The inhomogeneous distribution of intercalating species in the interlayer and, consequently, the turbostratic stacking of layers has been found for gibbsite-like polymers as well as in the case of Keggin cations (Čapková et al. 1998). The dominating contribution to the total sublimation energy comes from electrostatic interactions for both intercalating species, gibbsite-like polymers and Keggin cations.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

References

Čapková, P. Driessen, R.A.J. Numan, M. Schenk, H. Weiss, Z. and Klika, Z., 1998 Molecular simulations of the montmorillon-ite intercalated with aluminum complex cations. Part I. Intercalation with Al(7-x)+ 13 Clays Clay Miner 46 232239 10.1346/CCMN.1998.0460302.CrossRefGoogle Scholar
Driessen, R.A.J. de Loopstra, B.O. Bruijn, D.P. Kuipers, H.P.C.E. and Schenk, H., 1988 Program PLUVA J Computer-Aided Molecular Design 2 225240 10.1007/BF01531996.CrossRefGoogle Scholar
Dubbin, W.E. Goh, T.B. Oscarson, D.W. and Hawthorne, F.C., 1994 Properties of hydroxy-Al and -Cr interlayers in montmo-rillonites Clays Clay Miner 42 331336 10.1346/CCMN.1994.0420311.CrossRefGoogle Scholar
Figueras, F. Klapyta, Z. Massiani, P. Mountassir, Z. Tichit, D. and Fajula, F., 1990 Use of competitive ion exchange for intercalation of montmorillonite with hydroxy-aluminum species Clays Clay Miner 38 257264 10.1346/CCMN.1990.0380304.CrossRefGoogle Scholar
Hsu, P.H., 1988 Mechanism of gibbsite crystallization from partially neutralized aluminum chloride solutions Clays Clay Miner 36 2530 10.1346/CCMN.1988.0360104.Google Scholar
Hsu, P.H., 1992 Reaction of OH-Al polymers with smectites and vermiculites Clays Clay Miner 40 300305 10.1346/CCMN.1992.0400308.CrossRefGoogle Scholar
Méring, J. and Oberlin, A., 1967 Electron-optical study of smectites Clay Clay Miner 27 318 10.1346/CCMN.1967.0150102.CrossRefGoogle Scholar
Plee, D. Gatineau, L. and Fripiat, J.J., 1987 Pillaring processes of smectites with and without tetrahedral substitution Clays Clay Miner 35 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Saalfeld, H. and Wedde, M., 1974 Refinement of the crystal structure of gibbsite Al(OH)3 Zeitschrift fur Kristallografi 139 129135 10.1524/zkri.1974.139.1-2.129.CrossRefGoogle Scholar
Schoonheydt, R.A. and Leeman, H., 1992 Pillaring of saponite in concentrated medium Clay Miner 27 249252 10.1180/claymin.1992.027.2.09.CrossRefGoogle Scholar
Van den Schoonheydt, R.A. Eynde, J. Tubbax, H. Leeman, H. Stuyckens, M. Lenotte, I. and Stone, W.E.E., 1993 The Al pillaring of clays. Part I. Pillaring with dilute and concentrated Al solutions Clays Clay Miner 41 598607 10.1346/CCMN.1993.0410510.CrossRefGoogle Scholar
Schoonheydt, R.A. Leeman, H. Scorpion, A. and Lenotte, I Grobet, 1994 The Al pillaring of clays. Part II. Pillaring with [Al13O4(OH)24(H2O)12]7+ Clays Clay Miner 42 518525 10.1346/CCMN.1994.0420502.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Miner 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar