Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T19:44:52.506Z Has data issue: false hasContentIssue false

Nature and Stability of Radiation-Induced Defects in Natural Kaolinites: New Results and a Reappraisal of Published Works

Published online by Cambridge University Press:  28 February 2024

Blandine Clozel*
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09 Universités Paris 6 et 7, 4 Place Jussieu, 75252 Paris Cedex 05, France
Thierry Allard
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09 Universités Paris 6 et 7, 4 Place Jussieu, 75252 Paris Cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA CNRS 09 Universités Paris 6 et 7, 4 Place Jussieu, 75252 Paris Cedex 05, France O.R.S.T.O.M., Département T.O.A., 75480 Paris Cedex 10, France
*
*Present address: BRGM, DRIGGP, Research Division, Geotechnical Engineering and Mineral Technology, Avenue de Concyr. B.P. 6009, 45060 Orleans Cedex 2, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new appraisal of radiation-induced defects (RID) in natural kaolinite, i.e., positive trapped holes on oxygen atoms, has been undertaken using Q-band EPR spectra, recorded at 93 K, of irradiated annealed and oriented kaolinite samples originating from various environments. Three different centers were identified. Two of the centers, A- and A’-centers, are trapped holes on oxygen from Si-O bonds. They have a distinct signature and orthogonal orientation, i.e., perpendicular and parallel to the (ab) plane, respectively. The third center, the B-center, is a hole trapped on the oxygen bonding Al in adjacent octahedral positions (AlVI-O-AlVI bridge). This confirmed some previous assignments from the literature, some others are no longer considered as valid.

A least squares fitting procedure is proposed to assess the RID concentration in any kaolinite. It allows a quantitative approach of the thermal stability of RID. Isochronal annealing shows that the thermal stability of the centers decreases in the order A, A′, B over the temperature range 0–450°C: (1) B-center is completely annealed above 300°C; (2) A′-center can be annealed by heating at 400°C for more than two hours; (3) A-center is stable up to 450°C. The activation energy and the magnitude of the mean half-life for A-center is evaluated through isothermal annealing at 350, 375 and 400°C, with Ea = 2.0 eV ± 0.2, and t½ > 1012 years at 300 K. The stability of A-center seems to decrease with increasing crystalline disorder. Nevertheless, it is high enough for radiation dosimetry using kaolinites from any environment on the Earth's surface.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Aitken, M. J., 1985. Thermoluminescence Dating. London: Academic Press, 359 pp.Google Scholar
Angel, B. R., Jones, J. P. E., and Hall, P. L.. 1974 . Electron spin resonance studies of doped synthetic kaolinite I. Clay Miner. 10: 247255.CrossRefGoogle Scholar
Angel, B. R., and Vincent, W. E. J.. 1978 . Electron spin resonance studies of iron oxides associated with the surface of kaolins. Clays & Clay Miner. 26: 263272.CrossRefGoogle Scholar
Bonnin, D., Muller, S., and Calas, G.. 1982 . Le fer dans les kaolins. Etude par spectrométries RPE, Mössbauer, EXAFS. Bull. Minéral. 105: 467475.CrossRefGoogle Scholar
Brindley, G. W., and Lemaitre, J.. Thermal, oxidation and reduction reactions of clay minerals. In Chemistry of Clays and Clay Minerals. Newman, A. C. D., 1987 ed. Mineralogical Society Monograph 6. 319364.Google Scholar
Calas, G., 1988. Electron paramagnetic resonance. In Spectroscopic Methods in Mineralogy and Geology, Reviews in Mineralogy 18. Hawthorne, F. C., ed. Washington, D.C.: Mineralogical Society of America, 513571.CrossRefGoogle Scholar
Cases, J. M., Lietard, O., Yvon, J., and Delon, J. F.. 1982 . Etude des propriétés cristallographiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Minéral. 105: 439455.CrossRefGoogle Scholar
Clozel, B., 1991. Etude des défauts induits par irradiation dans les kaolinites. Approche expérimentale et implications géochimiques. Thesis, Univ. Paris 7, Paris, France, 156 pp.Google Scholar
Clozel, B., Gaite, J-M., and Muller, J-P.. 1994 . Al-O-Al paramagnetic defects in kaolinite. Phys. Chem. Miner. (accepted).CrossRefGoogle Scholar
Cuttler, A. H., 1980. The behaviour of a synthetic 57Fedoped kaolin; Mössbauer and electron paramagnetic resonance studies. Clay Miner. 15: 429444.CrossRefGoogle Scholar
Furetta, C., 1988. New calculations concerning the fading of thermoluminescent materials. Nucl. Tracks Radiat. Meas. 14: 3, 413414.CrossRefGoogle Scholar
Giese, R. F., 1988. Kaolin minerals. Structures and stabilities. In Hydrous Phyllosilicates, Reviews in Mineralogy 19. Bailey, S. W., ed. Washington, D.C.: Mineralogical Society of America, 2966.CrossRefGoogle Scholar
Griscom, D. L., 1984. Characterization of three E'-center variants in X- and γ-irradiated high purity a-SiO2. Nucl. Inst. Meth. Phys. Res. B Vol. 1, 481488.CrossRefGoogle Scholar
Hall, P. L., 1980. The application of electron spin resonance to studies of clay minerals. Isomorphous substitution and external surface properties. Clay Miner. 15: 321335.CrossRefGoogle Scholar
Hennig, G. J., and Grün, R.. 1983 . ESR dating in quaternary geology. Quat. Sci. Rev. 2: 157238.CrossRefGoogle Scholar
Herbillon, A., Mestdagh, M. M., Vielvoye, L., and Derouane, E. G.. 1976 . Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner. 11: 201220.CrossRefGoogle Scholar
Ildefonse, P., Muller, J. P., Clozel, B., and Calas, G.. 1990 . Study of two alteration systems as natural analogues for radionuclide release and migration. Eng. Geol. 29: 413439.CrossRefGoogle Scholar
Ildefonse, P., Muller, J. P., Clozel, B., and Calas, G.. 1991 . Record of past contact between altered rocks and radioactive solutions through radiation-induced defects in kaolinite. Mat. Res. Soc. Symp. Proc. 212: 749756.CrossRefGoogle Scholar
Jones, J. P. E., Angel, B. R., and Hall, P. L.. 1974 . Electron spin resonance studies of doped synthetic kaolinite II. Clay Miner. 10: 257269.CrossRefGoogle Scholar
Liétard, O., 1977. Contribution à l'étude des propriétés physicochimiques, cristallographiques et morphologiques des kaolins. Thèse de doctorat en Sciences Physiques., Nancy, France, 345 pp.Google Scholar
Malengreau, N., Muller, J. P., and Calas, G.. 1994 . Fe-speciation in kaolins: A diffuse reflectance study. Clays & Clay Miner. 42: (in press).CrossRefGoogle Scholar
Marfunin, A. S., 1979. Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin, Heidelberg, New York: Springer Verlag, 352 pp.CrossRefGoogle Scholar
Meads, R. E., and Malden, P. J.. 1975 . Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10: 313345.CrossRefGoogle Scholar
Mehra, O. P., and Jackson, M. L.. 1960 . Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. Clays & Clay Miner. 7: 317327.CrossRefGoogle Scholar
Muller, J. P., 1988. Analyse pétrologique d'une formation latéritique meuble du Cameroun. Essai de traçage d'une différenciation supergène par les paragénèses minérales secondaires. Travaux et Documents Microfichés 50. ORSTOM Paris, 664 pp.Google Scholar
Muller, J. P., and Bocquier, G.. Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon. In Proc. Intern. Clay Conf., Denver, 1985. Schultz, L. G., Olphen, H. van, and Mumpton, F. A., 1987 eds. Bloomington, Indiana: The Clay Minerals Society, 186196.Google Scholar
Muller, J. P., and Calas, G.. 1989 . Tracing kaolinites through their defect centers; kaolinite paragenesis in a laterite (Cameroon). Econ. Geol. 84: 694707.CrossRefGoogle Scholar
Muller, J.-P., and Calas, G.. Genetic significance of paramagnetic centers in kaolinites. In Kaolin Genesis and Utilization. Bundy, M., Murray, H. H., and Harvey, C., 1993 eds. Bloomington, Indiana: The Clay Minerals Society, Special Pub. 1., 261289.Google Scholar
Muller, J. P., Clozel, B., Ildefonse, P., and Calas, G.. 1992 . Radiation-induced defects in kaolinites. An indirect assessment of radionuclides migration in the geosphere. Appl. Geochem. Supl. Issue 1: 205216.CrossRefGoogle Scholar
Muller, J. P., Ildefonse, P., and Calas, G.. 1990 . Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays & Clay Miner. 38: 600608.CrossRefGoogle Scholar
Murray, H. H., 1988. Kaolin minerals: Their genesis and occurrences. In Hydrous Phyllosilicates, Reviews in Mineralogy 19. Bailey, S. W., ed. Washington, D.C.: Mineralogical Society of America, 6790.CrossRefGoogle Scholar
Pinnavaia, T. J., 1981. Electron spin resonance studies of clay minerals. In Advanced Techniques for Clay Minerals Analysis, Developments in Sedimentology 34. Fripiat, J. J., ed. Amsterdam: Elsevier, 139161.Google Scholar
Shimokawa, K., and Imaï, N.. 1987 . Simultaneous determination of alteration and eruption ages of volcanic rocks by electron spin resonance. Geochim. Cosmochim. Acta 51: 115119.CrossRefGoogle Scholar
Wieser, A., Göksu, H. Y., and Regulla, D. F.. 1985 . Characteristics of gamma-induced ESR spectra in various calcites. Nucl. Tracks Radiat. Meas. 10: 4/6, 831836.Google Scholar