Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T00:02:29.328Z Has data issue: false hasContentIssue false

The Nature of Co in Synthetic Co-substituted Goethites

Published online by Cambridge University Press:  01 January 2024

Raúl Pozas
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
T. Cristina Rojas
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
Manuel Ocaña*
Affiliation:
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, C. Américo Vespucio s/n, 41092 Sevilla, Spain
Carlos J. Serna
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
*
*E-mail address of corresponding author: mjurado@icmse.csic.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The crystallochemical features of Co in Co-substituted goethite solid-solutions prepared by two different procedures have been studied using infrared, X-ray photoelectron and electron energy loss spectroscopies. It was found that the path followed for the synthesis of Co-substituted goethite determines the oxidation state of Co in the goethite structure. Thus, in the solid-solution prepared by precipitation with Na2CO3 of an Fe(II) aqueous solution containing Co(II) cations, followed by the aerial oxidation of the precipitate, the Co cations were found to be divalent, whereas trivalent Co was incorporated into the goethite obtained by ageing a solution containing Fe(III) and Co(II) cations precipitated by the addition of KOH. This different behavior is explained by the higher pH of goethite formation in the latter case, which favors the oxidation of the Co(II) cations.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Burns, R.G., (1976) Uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides Geochimica et Cosmochimica Acta 40 95102 10.1016/0016-7037(76)90197-6.CrossRefGoogle Scholar
Burriel, F. Arribas, S. Lucena, F. and Hernández, J., (1983) Cobalto Química Analítica Cualitativa Madrid Paraninfo S.A. 671675.Google Scholar
Cornell, R.M., (1991) Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure Clay Minerals 26 427430 10.1180/claymin.1991.026.3.11.CrossRefGoogle Scholar
Cornell, R.M. and Giovanoli, R., (1989) Effect of cobalt on the formation of crystalline iron oxides from ferrihydrite in alkaline media Clays and Clay Minerals 37 6570 10.1346/CCMN.1989.0370108.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) Cation substitution The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses Weinheim, Germany VCH 3552.Google Scholar
Falqui, A. Serin, V. Calmels, L. Snoeck, E. Corrias, A. and Nenas, G., (2003) EELS investigation of FeCo/SiO2 nanocomposities Journal of Microscopy-Oxford 210 8088 10.1046/j.1365-2818.2003.01177.x.CrossRefGoogle Scholar
Gasser, U.G. Jeanroy, E. Mustin, C. Barres, O. Nüesch, R. Berthelin, J. and Herbillon, A.J., (1996) Properties of synthetic goethites with Co for Fe substitution Clay Minerals 31 465476 10.1180/claymin.1996.031.4.03.CrossRefGoogle Scholar
Gerth, J., (1990) Unit cell dimensions of pure and trace metal-associated goethites Geochimica et Cosmochimica Acta 54 363371 10.1016/0016-7037(90)90325-F.CrossRefGoogle Scholar
Iwasaki, K. and Yamamura, T., (2002) Whisker-like goethite nanoparticles containing cobalt synthesized in a wet process Materials Transactions 43 20972103 10.2320/matertrans.43.2097.CrossRefGoogle Scholar
Jiménez Mateos, J.M. Macias, M. Morales, J. and Tirado, J.L., (1990) Mn and Co substitution in δ-FeOOH and its decomposition products Journal of Materials Science 25 52075214 10.1007/BF00580152.CrossRefGoogle Scholar
Jiménez, V.M. Espinós, J.P. and González-Elipe, A.R., (1998) Control of the stoichiometry in the deposition of cobalt oxides on SiO2 Surface and Interface Analysis 26 6271 10.1002/(SICI)1096-9918(199801)26:1<62::AID-SIA349>3.0.CO;2-R.3.0.CO;2-R>CrossRefGoogle Scholar
Kühnel, R.A. Roorda, H.J. and Sttensma, J.J., (1975) The crystallinity of minerals — A new variable in pedogenetic processes: A study of goethite and associated silicates in latentes Clays and Clay Minerals 23 349354 10.1346/CCMN.1975.0230503.CrossRefGoogle Scholar
Leapman, R.D. Grunes, L.A. and Fejes, P.L., (1982) Study of the L2,3 edges in the 3d transitions metals and their oxides by electron-energy-loss spectroscopy with comparison to theory Physical Review B 26 614635 10.1103/PhysRevB.26.614.CrossRefGoogle Scholar
Lloyd, S.J. Botton, G.A. and Stobbs, M., (1995) Changes in the iron white-line ratio in the electron energy-loss spectrum of iron-copper multilayers Journal of Microscopy 180 288293 10.1111/j.1365-2818.1995.tb03687.x.CrossRefGoogle Scholar
Mcardell, C.S. Stone, A.T. and Tian, J., (1998) Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIOOH (manganite) Environmental Science & Technology 32 29232930 10.1021/es980362v.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite Clay Minerals 18 301312 10.1180/claymin.1983.018.3.07.CrossRefGoogle Scholar
Norrish, K., Nicholas, A.R. and Egan, D.J., (1975) Geochemistry and mineralogy of trace elements Trace Elements in the Soil-Plant-Animal London, New York Academic Press 5581 10.1016/B978-0-12-518150-1.50010-0.CrossRefGoogle Scholar
Nuñez, N.O. Tartaj, P. Morales, M.P. Pozas, R. Ocaña, M. and Serna, C.J., (2003) Preparation, characterization, and magnetic properties of Fe-based alloy particles with elongated morphology Chemistry of Materials 15 35583563 10.1021/cm031040f.CrossRefGoogle Scholar
Pearson, D.H. Fultz, B. and Ahn, C.C., (1988) Measurements of 3d state occupancy in transition-metals using electron-energy loss spectrometry Applied Physics Letters 53 14051407 10.1063/1.100457.CrossRefGoogle Scholar
Pease, D.M. Fasihuddin, A. Daniel, M. and Budnick, J.I., (2001) Method of linearizing the 3d L-3/L-2 white line ratio as a function of magnetic moment Ultramicroscopy 88 116 10.1016/S0304-3991(00)00116-9.CrossRefGoogle Scholar
Pozas, R. Ocaña, M. Morales, M.P. and Serna, C.J., (2002) Uniform nanosized goethite particles obtained by aerial oxidation in the FeSO4—Na2CO3 system Journal of Colloid and Interface Science 254 8794 10.1006/jcis.2002.8568.CrossRefGoogle ScholarPubMed
Pozas, R. Ocaña, M. Morales, M.P. Tartaj, P. Nuñez, N.O. and Serna, C.J., (2004) Synthesis of acicular Fe-Co nanoparticles and the effect of Al addition on their magnetic properties Nanotechnology 15 S190S196 10.1088/0957-4484/15/4/013.CrossRefGoogle Scholar
Retgers, W., (1889) Zeitschrif fur Physikalische Chemie 3 497.Google Scholar
Schulze, D.G., (1984) The influence of aluminium on iron oxides: VIII. Unit-Cell dimensions of Al-substituted goethites and estimation of Al from them Clays and Clay Minerals 32 3644 10.1346/CCMN.1984.0320105.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1984) The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites Clay Minerals 19 521539 10.1180/claymin.1984.019.4.02.CrossRefGoogle Scholar
Schulze, D.G. and Schwertmann, U., (1987) The influence of aluminium on iron oxides: XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C Clay Minerals 22 8392 10.1180/claymin.1987.022.1.07.CrossRefGoogle Scholar
Schwertmann, U., (1984) The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl Clay Minerals 19 919 10.1180/claymin.1984.019.1.02.CrossRefGoogle Scholar
Schwertmann, U. Taylor, R.M., Dixon, J B and Weed, S.B., (1977) Iron Oxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 145180.Google Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. and Weed, S.B., (1989) Iron Oxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 380438.Google Scholar
Shannon, R.D., (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar