Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T03:51:24.089Z Has data issue: false hasContentIssue false

NMR spectroscopy of naturally occurring surface-adsorbed fluoride on Georgia kaolinite

Published online by Cambridge University Press:  01 January 2024

Stacey G. Cochiara
Affiliation:
Center for Environmental Molecular Science, Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
Brian L. Phillips*
Affiliation:
Center for Environmental Molecular Science, Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
*
* E-mail address of corresponding author: brian.phillips@stonybrook.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using 19F magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, we show that most of the fluoride present in the KGa-lb reference kaolinite from Washington County, Georgia, occurs as a surface-adsorbed species bonded to Al. This surface fluoride can be removed from the <2 µm fraction by acid wash, but is largely retained in the coarse fraction. Correlation of integrated 19F NMR peak intensities with fluoride sorption experiments indicates a bulk F content of ∼144 ppm for KGa-1b, of which ∼30% substitutes for hydroxyl sites in the mineral structure and the remaining 70% occurs adsorbed on particle surfaces, corresponding to an edge surface fluoride density of ∼0.7 F nm−2. 19F{27Al} TRAPDOR (TRAnsfer of Populations in DOuble Resonance) NMR data for the original kaolinite and for products of F sorption experiments at pH 4 show that all of the observed 19F signals arise from fluoride bonded to Al atoms. Furthermore, bridging Al-F-Al sites and terminal Al-F give distinctly different TRAPDOR fractions allowing assignment of resolved peaks based on the number of Al in the first coordination sphere. This result was confirmed for fluoride adsorbed to the surface of gibbsite from aqueous suspension. No evidence was found for Si-F-type environments on the kaolinite surfaces.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Agarwal, M. Rai, K. Shrivastav, R. and Dass, S., 2002 A study on fluoride sorption by montmorillonite and kaolinite Water Air and Soil Pollution 141 247261 10.1023/A:1021328525215.CrossRefGoogle Scholar
Bar-Yosef, B. Afik, I. and Rosenberg, R., 1988 Fluoride sorption by montmorillonite and kaolinite Soil Science 145 194200 10.1097/00010694-198803000-00006.CrossRefGoogle Scholar
Bickmore, B.R. Nagy, K.L. Sandlin, P.E. and Crater, T.S., 2002 Quantifying surface areas of clays by atomic force microscopy American Mineralogist 87 780783 10.2138/am-2002-5-622.CrossRefGoogle Scholar
Bodor, A. Toth, I. Banyai, I. Szabo, Z. and Hefter, G.T., 2000 19F NMR study of the equilibria and dynamics of the Al3+/F system Inorganic Chemistry 39 25302537 10.1021/ic991248w.CrossRefGoogle ScholarPubMed
Bower, C.A. and Hatcher, J.T., 1967 Adsorption of fluoride by soils and minerals Soil Science 103 151155 10.1097/00010694-196703000-00001.CrossRefGoogle Scholar
Brady, P.V. Cygan, R.T. and Nagy, K.L., 1996 Molecular controls on kaolinite surface charge Journal of Colloid and Interface Science 183 356364 10.1006/jcis.1996.0557.CrossRefGoogle ScholarPubMed
Chupas, P.J. Ciraolo, M.F. Hanson, J.C. and Grey, C.P., 2001 In situ X-ray diffraction and solid-state NMR study of the fluorination of γ-Al2O3 with HCF2Cl Journal of the American Chemical Society 123 16941702 10.1021/ja0032374.CrossRefGoogle Scholar
Chupas, P.J. Corbin, D.R. Rao, V.N.M. Hanson, J.C. and Grey, C.P., 2003 A combined solid-state NMR and diffraction study of the structures and acidity of fluorinated aluminas: Implications for catalysis Journal of Physical Chemistry B 107 83278336 10.1021/jp0300905.CrossRefGoogle Scholar
Davis, J.A. Kent, D.B., Hochella, M.F. and White, A.F., 1990 Surface complexation modeling in aqueous geochemistry Interface Geochemistry Washington, D.C. Mineralogical Society of America 177260 10.1515/9781501509131-009.CrossRefGoogle Scholar
Edmunds, W.M. Smedley, P.L. and Selinus, O., 2005 Fluoride in natural waters Essentials of Medical Geology: Impacts of the Natural Environment on Public Health New York Academic Press 301330.Google Scholar
Fischer, L. Harle, V. Kasztelan, S. and de la Caillerie, J.B.D., 2000 Identification of fluorine sites at the surface of fluorinated γ-alumina by two-dimensional MAS NMR Solid State Nuclear Magnetic Resonance 16 8591 10.1016/S0926-2040(00)00058-8.CrossRefGoogle ScholarPubMed
Grey, C.P. and Vega, A.J., 1995 Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR Journal of the American Chemical Society 117 82328242 10.1021/ja00136a022.CrossRefGoogle Scholar
Hiemstra, T. and van Riemsdijk, W.H., 2000 Fluoride adsorption on goethite in relation to different types of surface sites Journal of Colloid and Interface Science 225 94104 10.1006/jcis.1999.6697.CrossRefGoogle ScholarPubMed
Huertas, F.J. Chou, L. and Wollast, R., 1998 Mechanism of kaolinite dissolution at room temperature and pressure: Part I. surface speciation Geochimica et Cosmochimica Acta 62 417431 10.1016/S0016-7037(97)00366-9.CrossRefGoogle Scholar
Huve, L. Delmotte, L. Martin, P. Ledred, R. Baron, J. and Saehr, D., 1992 19F MAS-NMR study of structural fluorine in some natural and synthetic 2:1 layer silicates Clays and Clay Minerals 40 186191 10.1346/CCMN.1992.0400208.CrossRefGoogle Scholar
Kau, P.M.H. Smith, D.W. and Binning, P.J., 1997 The dissolution of kaolin by acidic fluoride wastes Soil Science 162 896911 10.1097/00010694-199712000-00005.CrossRefGoogle Scholar
Kau, P.M.H. Smith, D.W. and Binning, P., 1998 Experimental sorption of fluoride by kaolinite and bentonite Geoderma 84 89108 10.1016/S0016-7061(97)00122-5.CrossRefGoogle Scholar
Labouriau, A. Kim, Y.W. Chipera, S. Bish, D.L. and Earl, W.L., 1995 A 19F nuclear magnetic resonance study of natural clays Clays and Clay Minerals 43 697704 10.1346/CCMN.1995.0430606.CrossRefGoogle Scholar
Liu, Y. and Tossell, J., 2003 Possible Al-F bonding environment in fluorine-bearing sodium aluminosilicate glasses: From calculation of 19F NMR shifts Journal of Physical Chemistry B 107 1128011289 10.1021/jp0350417.CrossRefGoogle Scholar
Meenakshi, and Maheshwari, R.C., 2006 Fluoride in drinking water and its removal Journal of Hazardous Materials 137 456463 10.1016/j.jhazmat.2006.02.024.CrossRefGoogle ScholarPubMed
Nordin, J.P. Sullivan, D.J. Phillips, B.L. and Casey, W.H., 1999 Mechanisms for fluoride-promoted dissolution of bayerite [β-Al(OH)3(s)] and boehmite [γ-AlOOH]: 19F-NMR spectroscopy and aqueous surface chemistry Geochimica et Cosmochimica Acta 63 35133524 10.1016/S0016-7037(99)00185-4.CrossRefGoogle Scholar
Perrott, K.W. Smith, B.F.L. and Inkson, R.H.E., 1976 Reaction of fluoride with soils and soil minerals Journal of Soil Science 27 5867 10.1111/j.1365-2389.1976.tb01975.x.CrossRefGoogle Scholar
Pulfer, K. Schindler, P.W. Westall, J.C. and Grauer, R., 1984 Kinetics and mechanism of dissolution of bayerite (γ-Al(OH)3) in HNO3-HF solutions at 298.2°K Journal of Colloid and Interface Science 101 554564 10.1016/0021-9797(84)90067-5.CrossRefGoogle Scholar
Rosenqvist, J. and Casey, W.H., 2004 The flux of oxygen from the basal surface of gibbsite (α-Al(OH)3) at equilibrium Geochimica et Cosmochimica Acta 68 35473555 10.1016/j.gca.2004.02.022.CrossRefGoogle Scholar
Rosenqvist, J. Persson, P. and Sjoberg, S., 2002 Protonation and charging of nanosized gibbsite (α-Al(OH)3) particles in aqueous suspension Langmuir 18 45984604 10.1021/la015753t.CrossRefGoogle Scholar
Sigg, L. and Stumm, W., 1981 The interaction of anions and weak acids with the hydrous goethite (α-FeOOH) surface Colloids and Surfaces 2 101117 10.1016/0166-6622(81)80001-7.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press 234 pp.Google Scholar
Thomas, J. Glass, H.D. White, W.A. and Trandel, R.M., 1977 Fluoride content of clay minerals and argillaceous earth materials Clays and Clay Minerals 25 278284 10.1346/CCMN.1977.0250405.CrossRefGoogle Scholar
Vasudevan, D. and Stone, A.T., 1998 Adsorption of 4-nitrocatechol, 4-nitro-2-aminophenol, and 4-nitro-1,2-phenylenediamine at the metal (hydr)oxide/water interface: Effect of metal (hydr)oxide properties Journal of Colloid and Interface Science 202 119 10.1006/jcis.1998.5422.CrossRefGoogle Scholar
Weerasooriya, R. and Wickramarathna, H.U.S., 1999 Modeling anion adsorption on kaolinite Journal of Colloid and Interface Science 213 395399 10.1006/jcis.1999.6103.CrossRefGoogle ScholarPubMed
Weerasooriya, R. Wickramarathne, H.U.S. and Dharmagunawardhane, H.A., 1998 Surface complexation modeling of fluoride adsorption onto kaolinite Colloids and Surfaces A 144 267273 10.1016/S0927-7757(98)00646-3.CrossRefGoogle Scholar
Wolff-Boenisch, D. Gislason, S.R. and Oelkers, E.H., 2004 The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25°C Geochimica et Cosmochimica Acta 68 45714582 10.1016/j.gca.2004.05.026.CrossRefGoogle Scholar
Yu, P. Lee, A.P. Phillips, B.L. and Casey, W.H., 2003 Potentiometrie and 19F nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: Implications for aluminum (hydr)oxide mineral surfaces Geochimica et Cosmochimica Acta 67 10651080 10.1016/S0016-7037(02)00919-5.CrossRefGoogle Scholar
Zeng, Q. and Stebbins, J.F., 2000 Fluoride sites in aluminosilicate glasses: High-resolution 19F NMR results American Mineralogist 85 863867 10.2138/am-2000-5-630.CrossRefGoogle Scholar
Zutic, V. and Stumm, W., 1984 Effect of organic acids and fluoride on the dissolution kinetics of hydrous alumina: A model study using the rotating disk electrode Geochimica et Cosmochimica Acta 48 14931503 10.1016/0016-7037(84)90405-8.CrossRefGoogle Scholar