Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T12:54:53.445Z Has data issue: false hasContentIssue false

The occurrence and origin of the söğüt kaolinite deposits in the Paleozoic Saricakaya granite-granodiorite complexes and overlying Neogene sediments (Bilecik, northwestern Turkey)

Published online by Cambridge University Press:  01 January 2024

Selahattin Kadir*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
Firdevs Kart
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480, Eskişehir, Turkey
*
* E-mail address of corresponding author: skadir_esogu@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Söğüt kaolinite deposits at Çaltı, İnhisar, and Küre, Turkey, are an important source of raw materials for the ceramics industry of that country, but no detailed mineralogical or geochemical characterizations of these economically important materials have been carried out to date. The purpose of this study was to fill this gap by performing mineralogical, geochemical, and isotopic characterizations of these kaolinite deposits which occur within Paleozoic granite-granodiorite complexes that are crosscut by aplite and pegmatite dikes, and overlain by Neogene sedimentary units. These units are dominated by quartz veins and networks of subvertical fractures and weak zones that were invaded by hydrothermal fluids, resulting in their kaolinization and silicification. Altered units and related host rocks were examined using polarized-light microscopy, X-ray diffractometry, scanning electron microscopy, infrared spectroscopy, and chemical and isotopic methods. Feldspar crystals are either sericitized or kaolinized, and mica exhibits partial chloritization; Fe-Ti-Mn oxides occur within fractures. Kaolinite crystals occur in authigenic vermiform or plate-like stacked forms, having contacts with resorbed feldspar crystals which locally exhibit thick, platy, and subparallel orientations relative to microfractures, the pathways for hydrothermal-fluid injection. Altered feldspar relicts are associated mainly with kaolinite, smectite, quartz crystals, and illite/mica. Increase in (Al+Fe)/Si in the kaolinized units (relative to host-rock granite and granodiorite complexes and silicification), depletion of Ba+Rb, and a negative Eu anomaly reveal that the alteration of feldspar by hydrothermal fluid, the character of which was determined from O- and H-isotopic values, resulted in the precipitation of kaolinite. Thus, the Söğüt kaolinite deposit possibly formed by hydrothermal alteration and a feldspar dissolution-precipitation mechanism in both the granite-granodiorites complexes and related overlying sedimentary units under acidic environmental conditions, which developed via depletion of the soluble elements Na and Ca.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Akıncı, O., 1968 Bilecik bölgesi kaolin yatakları ve civarının jeolojisi, kaolinlerin seramik özellikleri Maden Tetkik ve Arama Enstitüsü Dergisi 70 6782.Google Scholar
Aksoy, H., 1978 Geology and clay deposits of the Küreköy-Inhisar (Söğüt-Bilecik) Yüksek Mühendislik Tezi, O.D.T.Ü Ankara Fen Bilimleri Enstitüsü 65 pp. (Unpublished MSc thesis).Google Scholar
Aldaham, A.A. and Morad, S., 1986 Mineralogy and chemistry of diagenetic clay minerals in Proterozoic sandstones from Sweden American Journal of Science 286 2980 10.2475/ajs.286.1.29.CrossRefGoogle Scholar
Anderson, T.F. Arthur, M.A., Arthur, M.A. Anderson, T.F. Kaplan, I.R. Veizer, J. and Land, L.S., 1983 Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems Stable Isotopes in Sedimentary Geology 1151.CrossRefGoogle Scholar
Arslan, M. Kadir, S. Abdioğlü, E. and Kolaylı, H., 2006 Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey Clay Minerals 41 599619 10.1180/0009855064120208.CrossRefGoogle Scholar
Berner, E.K. and Berner, R.A., 1996 Global Environment: Water, Air, and Geochemical Cycles New Jersey, USA Prentice-Hall 376 pp.Google Scholar
Bobos, I. Duplay, J. Rocha, J. and Gomes, C., 2001 Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São vicente de Pereira, Portugal Clays and Clay Minerals 49 596607 10.1346/CCMN.2001.0490609.CrossRefGoogle Scholar
Boulais, P. Valley, J.M. Choux, J.E. Fourcade, S. and Martineau, F., 2000 Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O, H) constraints Chemical Geology 168 211223 10.1016/S0009-2541(00)00225-4.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Bristow, C.M., 1977 A review of the evidence for the origin of the kaolin deposits in S.W. England Proceedings of the 8th International Kaolin Symposium and Meeting on Alunite 119.Google Scholar
Chen, P.Y. Lin, M.L. and Zheng, Z., 1997 On the origin of the name kaolin and the kaolin deposits of the Kauling and Dazhou areas, Kiangsi, China Applied Clay Science 12 125 10.1016/S0169-1317(97)00007-0.CrossRefGoogle Scholar
Çoğulu, E. Delaloye, E. and Chessex, R., 1965 Sur l’age de quelques rockes intrusives acides de la region Eskişehir, Turquie Archives des Sciences Genève 18 692699.Google Scholar
Delaloye, M. and Bingöl, E., 2000 Granitoids from western and northwestern Anatolia: Geochemistry and modeling of Geodynamic Evolution International Geology Review 42 241263 10.1080/00206810009465081.CrossRefGoogle Scholar
Demirkol, C., 1977 Üzümlü-Tuzaklı (Bilecik ili) dolayının jeolojisi Tatbiki Jeoloji Kürsüsü Arşivi 20 916.Google Scholar
Duru, M. Gedik, and Aksay, A., 2002 1:100.000 ölçekli Türkiye Jeoloji Haritası. No. 37 Ankara The General Directorate of Mineral Research.Google Scholar
Ehrenberg, S.N., 1991 Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf Marine and Petroleum Geology 8 250269 10.1016/0264-8172(91)90080-K.CrossRefGoogle Scholar
Ekosse, G., 2001 Provenance of the Kgwakgwe kaolin deposit in southeastern Bostwana and its possible utilization Applied Clay Science 20 137152 10.1016/S0169-1317(01)00064-3.CrossRefGoogle Scholar
Eren, M. and Kadir, S., 1999 Colour origin of upper Cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey International Journal of Earth Sciences 88 593595 10.1007/s005310050287.CrossRefGoogle Scholar
Exley, C.S., 1976 Observations on the formation of kaolinite in the St. Austell Granite, Cornwall Clay Minerals 11 5163 10.1180/claymin.1976.011.1.06.CrossRefGoogle Scholar
Farmer, V.C. Palmieri, F. and Gieseking, J.E., 1975 The characterization of soil minerals by infrared spectroscopy Soil Components, vol. 2, Inorganic Components New York Springer-Verlag 573671 10.1007/978-3-642-65917-1_17.CrossRefGoogle Scholar
Garbarino, C. Masi, U. Padalino, G. and Palomba, M., 1994 Geochemical features of the kaolin deposits from the Sardinia (Italy) and genetic implications Chemie der Erde 54 213233.Google Scholar
Gençoğlu, H. (1988) Yeniköy-Küre-Çaltı (Bilecik Söğüt) yöresi Neojen baseninin sedimanter jeolojik ve mineralojik-petrografik incelenmesi. Yüksek Mühendilik Tezi, Hacettepe Üniversitesi, Ankara, 147 pp. (unpublished MSc thesis).Google Scholar
Gençoğlu, H. Bayhan, H. and Yalçın, H., 1989 Bilecik-Söğüt Yöresi kaolinit yataklarının mineralojisi ve kökeni, IV. Ulusal Kil Sempozyumu C.Ü., Sivas 97110.Google Scholar
Gilkes, R.J. and Suddhiprakarn, A., 1979 Biotite alteration in deeply weathered granite. I. Morphological, mineralogical, and chemical properties Clays and Clay Minerals 27 349360 10.1346/CCMN.1979.0270505.CrossRefGoogle Scholar
Gilkes, R.J. and Suddhiprakarn, A., 1979 Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals Clays and Clay Minerals 27 361367 10.1346/CCMN.1979.0270506.CrossRefGoogle Scholar
Göncüoğlu, M.C., Turhan, N., Şentürk, K., Uysal, Ş., Özcan, A., and Işık, A. (1996) Orta Sakarya’da Nallıhan-Sarıcakaya arasındaki yapısal jeolojik özellikleri. MTA Report No. (Unpublished).Google Scholar
Göncüoğlu, M.C. Turhan, N. Şentürk, K. Özcan, A. Uysal, Yılmaz, M., Bozkurt, E. Winchester, J.A. and Piper, J.D.A., 2000 A geotraverse across northwestern Turkey: tectonic units of central Sakarya region and their tectonic evolution Tectonics and Magmatism in Turkey and Surrounding Area London Geological Society 139161.Google Scholar
Gouveia, M.A. Prudencio, M.L. Figueiredo, M.O. Pereira, L.C.J. Waerenbrogh, J.C. Morgado, I. Pena, T. and Lopes, A., 1993 Behavior of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal Chemical Geology 107 293298 10.1016/0009-2541(93)90194-N.CrossRefGoogle Scholar
Gürel, A. and Kadir, S., 2008 Geology and mineralogy of Late Miocene clayey sediments in the southeastern part of the central Anatolian volcanic province, Turkey Clays and Clay Minerals 56 307321 10.1346/CCMN.2008.0560302.CrossRefGoogle Scholar
Harris, W.G. Zelazny, L.W. Baker, J.C. and Martens, D.C., 1985 Biotite kaolinization in Virginia Piedmont soils: I. Extent, profile trends, and grain morphological effects Soil Science Society of America Journal 49 12901297 10.2136/sssaj1985.03615995004900050044x.CrossRefGoogle Scholar
Harris, W.G. Zelazny, L.W. and Bloss, F.D., 1985 Biotite kaolinization in Virginia Piedmont soils: II. Zonation in single grains Soil Science Society of America Journal 50 810819.Google Scholar
Inoue, A., and Velde, B., 1995 Formation of clay minerals in hydrothermal environments Origin and Mineralogy of Clays: Clays and the Environment 268329 10.1007/978-3-662-12648-6_7.CrossRefGoogle Scholar
Juteau, T., Bingöl, F., Noack, Y., and Whitechurch, H. (1978) 38. Preliminary results: mineralogy and geochemistry of alteration products in leg 45 basement samples. Initial Reports of the Deep Sea Drilling Project, XLV, 613645, Washington.Google Scholar
Kadir, S. and Akbulut, A., 2009 Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey Clay Minerals 44 89112 10.1180/claymin.2009.044.1.89.CrossRefGoogle Scholar
Kadir, S. and Karakaş, Z., 2002 Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey Neues Jahrbuch fur Mineralogie, Abhandlungen 177 113132.CrossRefGoogle Scholar
Kadir, S. Önen-Hall, P. Aydin, S.N. Yakicier, C. Akarsu, N. and Tuncer, M., 2008 Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of northwest Turkey Environmental Geology 54 391409 10.1007/s00254-007-0826-3.CrossRefGoogle Scholar
Kalyoncuoğlu, A., Özkan, Ü. and Aktaran, İ. (1977) Çatlı-Küre-Yeniköy (Bilecik-Söğüt) dolaylarının refrakter kil ve kaolen aramaları ara raporu. MTA Rapor No. 1310, 85 pp. (unpublished).Google Scholar
Kibici, Y., 1982 Sarıcakaya (Eskişehir ili) masifinin jeolojisi, petrografisi ve petrolojik etüdü, masife ilişkin kalay araştırması Doktora Tezi Eskişehir Devlet Mühendislik ve Mimarlık Akademisi 224 pp.Google Scholar
Kitagawa, R. and Köster, H.M., 1991 Genesis of the Tirschenreuth kaolin deposit in Germany compared with the Kohdachi kaolin deposit in Japan Clay Minerals 26 6179 10.1180/claymin.1991.026.1.07.CrossRefGoogle Scholar
Kristmannsdottir, H. (1978) Alteration of basaltic rocks by hydrothermal activity at 100–300°C. Proceedings of International Clay Conference, Oxford, pp. 359367.Google Scholar
Leinemann, C.P. Taillefert, M. Perret, D. and Gaillard, J.F., 1997 Association of cobalt and manganese in aquatic systems: chemical and microscpic evidence Geochimica et Cosmochimica Acta 61 14371466 10.1016/S0016-7037(97)00015-X.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals. Chapter 3 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
Maclean, W.H. and Kranidiotis, P., 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec Economic Geology 2 951962 10.2113/gsecongeo.82.4.951.CrossRefGoogle Scholar
Madejová, P. Komadel, P. and Čičel, B., 1992 Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas Geologica Carpathica Clays 1 912.Google Scholar
Maiza, P.J. Pieroni, D. Marfil, S.A., Dominguez, E.A. Mas, G.R. and Gravero, F., 2003 Geochemistry of hydrothermal kaolins in the SE area of Los Menucos, Province of Rio Negro, Argentina A Clay Odyssey Amsterdam Elsevier 123130.Google Scholar
Meunier, A. and Velde, B., 1995 Hydrothermal alteration by veins Origin and Mineralogy of Clays, Clays and the Environment Berlin Springer-Verlag 247267 10.1007/978-3-662-12648-6_6.CrossRefGoogle Scholar
Meunier, A., 2005 Clays Berlin, Heidleberg, Germany Springer-Verlag 472 pp.Google Scholar
Meunier, A. and Velde, B., 2004 Illite, Origin, Evolution and Metamorphism Berlin, Heidelberg, New York Springer-Verlag 286 pp.Google Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 332 pp.Google Scholar
Nagasawa, K., Sudo, T. and Shimoda, S., 1978 Kaolin minerals Clays and Clay Minerals of Japan Tokyo Elsevier 189219 10.1016/S0070-4571(08)70686-1.CrossRefGoogle Scholar
Njoya, A. Nkoumbou, C. Grosbois, C. Njopwouo, D. Njoya, D. Courtin-Nomade, A. Yvon, J. and Martin, F., 2006 Genesis of Mayouom kaolin deposit (western Cameroon) Applied Clay Science 32 125140 10.1016/j.clay.2005.11.005.CrossRefGoogle Scholar
Parry, W.T. Ballantyne, J.M. and Jacobs, D.C., 1984 Geochemistry of hydrothermal sericite from Roosevelt Hot Springs and the Tintic and Santa Rita porphyry copper systems Economic Geology 7286.CrossRefGoogle Scholar
Rebertus, R.A. Weed, S.B. and Buol, S.W., 1986 Transformations of biotite to kaolinite during saprolite-soil weathering Soil Science Society of America Journal 50 810819 10.2136/sssaj1986.03615995005000030049x.CrossRefGoogle Scholar
Robbins, E.I. Agostino, J.P.D. Ostwald, J. Fanning, D.S. Carter, V. and Van Hoven, R.L., 1992 Manganese nodules and microbial oxidation of manganese in the Huntley Meadows Wetland, Virginia, USA Catena Supplement 21 179202.Google Scholar
Rollinson, H.R., 1993 Using Geochemical Data: Evaluation, Presentation Interpretation New York John Wiley and Sons Inc. 352 pp.Google Scholar
Russell, J.D. and Wilson, M.J., 1987 Infrared methods A Handbook of Determinative Methods in Clay Minerals Glasgow, UK Blackie 133173.Google Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Schwertmann, U. and Murad, E., 1983 Effect of pH on the formation of goethite and hematite from ferrihydrite Clays and Clay Minerals 31 277284 10.1346/CCMN.1983.0310405.CrossRefGoogle Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. and Weed, S.B., 1989 Iron oxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 379438.Google Scholar
Şengör, A.M.C., 1979 The North Anatolian Transform Fault: its age, offset and tectonic significance Journal of the Geological Society 13 268282.Google Scholar
Şengör, A.M.C. and Yılmaz, Y., 1981 Tethyan evolution of Turkey: a plate tectonic approach Tectonophysics 75 181241 10.1016/0040-1951(81)90275-4.CrossRefGoogle Scholar
Sheppard, S.M.F., Valley, J.W. Taylor, H.P. and O’Neil, J.R., 1986 Characterization and Isotopic Variations in Natural Waters Stable Isotopes in High Temperature Geological Processes Washington, D.C. Mineralogical Society of America 141162.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemisty of clay minerals Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Siddique, M.A. and Ahmed, Z., 2008 Geochemistry of the kaolin deposits of Swat (Pakistan) Chemie der Eder Geochemistry 68 207219 10.1016/j.chemer.2005.11.001.CrossRefGoogle Scholar
Srasra, E. Bergaya, F. and Fripiat, J.J., 1994 Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay Clays and Clay Minerals 42 237241 10.1346/CCMN.1994.0420301.CrossRefGoogle Scholar
State Planning Organization of Turkey, 2001 State Planning Organization of Turkey, 8th Five-Year Development Plan, Mining Special Expert Commission Report, Volume 1 Ankara Industrial Minerals Sub-Commission, Ceramic clays—Kaolin—Pyrophyllite—Wollastonite—Talc Group 224 pp.Google Scholar
Stock, L. and Sikora, W., 1976 Transformation of micas in the process of kaolinization of granites and gneisses Clays and Clay Minerals 24 156162 10.1346/CCMN.1976.0240402.CrossRefGoogle Scholar
Taylor, H.P., 1974 The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition Economic Geology 69 843883 10.2113/gsecongeo.69.6.843.CrossRefGoogle Scholar
Taylor, H.P. and Barnes, H.L., 1979 Oxygen and hydrogen relationships in hydrothermal mineral deposits Geochemistry of Hydrothermal Ore Deposits 2nd New York Wiley 236277.Google Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: Its Composition and Evolution Oxford Blackwell 312 pp.Google Scholar
Van der Marel, H.W. and Beutelspacher, H., 1976 Atlas of IR Spectroscopy of Clay Minerals and Their Admixtures Amsterdam Elsevier 396 pp.Google Scholar
Wilson, M.J. and Wilson, M.J., 1987 X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie 2698.Google Scholar
Yui, T.F. and Chang, S.S., 1999 Formation conditions of vesicle/fissure-filling smectites in Penghu basalts: a stabe-isotope assessment Clay Minerals 34 381393 10.1180/000985599546262.CrossRefGoogle Scholar
Ziegler, K., 2006 Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas Clay Minerals 41 355393 10.1180/0009855064110200.CrossRefGoogle Scholar
Zielinski, R.A., 1985 Element mobility during alteration of silicic ash to kaolinite - a study of tonstein Sedimentology 32 567579 10.1111/j.1365-3091.1985.tb00471.x.CrossRefGoogle Scholar