Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T09:12:38.489Z Has data issue: false hasContentIssue false

On the mechanisms of apophyllite alteration in aqueous solutions. A combined AFM, XPS and MAS NMR study

Published online by Cambridge University Press:  01 January 2024

Kirill Aldushin
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany Institut für Mineralogie und Geochemie, Universität zu Köln, Zülpicher Str. 49b, 50674 Köln, Germany
Guntram Jordan*
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Michael Fechtelkord
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Wolfgang W. Schmahl
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Hans-Werner Becker
Affiliation:
Institut fur Physik mit Ionenstrahlung (Exp. Physik III), Ruhr-Universität Bochum, 44780 Bochum, Germany
Werner Rammensee
Affiliation:
Institut für Mineralogie und Geochemie, Universität zu Köln, Zülpicher Str. 49b, 50674 Köln, Germany
*
*E-mail address of corresponding author: guntram.jordan@ruhr-uni-bochum.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Apophyllite, a hydrous K-Ca-phyllosilicate, reacts with acidic aqueous solutions at room temperature. Various analytical methods have been applied to study the mechanism of the reaction and its characteristics, i.e. the changes in chemical composition, modifications in crystal structure and alterations in surface morphology. In contact with acidic solution, protonation of the terminal, non-bridging oxygen at the silicate tetrahedra takes place and the interlayer cations K+ and Ca2+ are removed. The protonation and ion removal causes the interlayer spacing to increase. Atomic force microscopy shows that the increase takes place discontinuously and, therefore, reflects a discontinuous reaction that comprises a two- or three-step protonation. Additionally, three structurally different protonation sites have been detected by nuclear magnetic resonance spectroscopy which also differ in the amount of close-by hydrogen, although in pristine apophyllite all terminal oxygen positions at silicate tetrahedra are structurally equivalent. In many clay minerals such structurally different protonation sites have not been detected so far. Thus, the multi-step protonation process in apophyllite clearly demonstrates the vast sensitivity of the protonation reaction on small structural variations in phyllosilicates.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2004

References

Aldushin, K. Jordan, G. Rammensee, W. Schmahl, W.W. and Becker, H.-W., (2004) Apophyllite (001) surface alteration inaqueous solutions studied by HAFM Geochimica et Cosmochimica Acta 68 217226 10.1016/S0016-7037(03)00375-2.CrossRefGoogle Scholar
Astilleros, J.M. Pina, C.M. Fernandez-Diaz, L. and Putnis, A., (2002) Molecular-scale surface processes during the growth of calcite in the presence of manganese Geochimica et Cosmochimica Acta 66 31773189 10.1016/S0016-7037(02)00892-X.CrossRefGoogle Scholar
Aznar, A.J. Gutierrez, E. Diaz, P. Alvarez, A. and Poncelet, G., (1996) Silica from sepiolite: Preparation, textural properties, and use as support to catalysts Microporous Materials 6 105114 10.1016/0927-6513(95)00096-8.CrossRefGoogle Scholar
Bickmore, B.R. Bosbach, D. Hochella, M.F. Jr. Charlet, L. and Rufe, E., (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms American Mineralogist 86 411423 10.2138/am-2001-0404.CrossRefGoogle Scholar
Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371 10.1346/CCMN.2003.0510401.CrossRefGoogle Scholar
Bickmore, B.R. Tadanier, C.J. Rosso, K.M. Monn, W.D. and Eggett, L.D., (2004) Bond-valence methods for pKa prediction: Critical reanalysis and a new approach Geochimica et Cosmochimica Acta 68 20252042 10.1016/j.gca.2003.11.008.CrossRefGoogle Scholar
Bosbach, D. Charlet, L. Bickmore, B. and Hochella, M.F. Jr., (2000) The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy American Mineralogist 85 12091216 10.2138/am-2000-8-914.CrossRefGoogle Scholar
Brandt, F. Bosbach, D. Krawczyk-Barsch, E. Arnold, T. and Bernhard, G., (2003) Chlorite dissolution in the acid pH-range: A combined microscopic and macroscopic approach Geochimica et Cosmochimica Acta 67 14511461 10.1016/S0016-7037(02)01293-0.CrossRefGoogle Scholar
Cave, L.C., (2002) Apophyllite weathering and the aqueous geochemistry of a Karoo breccia pipe Republic of South Africa Department of Geological Sciences, University of Cape Town PhD thesis.Google Scholar
Colville, A.A. Anderson, C.P. and Black, P.M., (1971) Refinement of the crystal structure of apophyllite, I. X-ray diffraction and physical properties American Mineralogist 56 12221233.Google Scholar
Corma, A. and Perez-Periente, J., (1987) Surface acidity and activity of modified sepiolite Clay Minerals 22 423433 10.1180/claymin.1987.022.4.06.CrossRefGoogle Scholar
Deuster, V. Schick, M. Kayser, T. Dabringhaus, H. Klapper, H. and Wandelt, K., (2003) Studies of the facetting of the polished (100) face of CaF2 Journal of Crystal Growth 250 313323 10.1016/S0022-0248(02)02457-0.CrossRefGoogle Scholar
Duckworth, O.W. and Martin, S.T., (2003) Connections between surface complexation and geometric models of mineral dissolution investigated for rhodochrosite Geochimica et Cosmochimica Acta 67 17871801 10.1016/S0016-7037(02)01305-4.CrossRefGoogle Scholar
Fechtelkord, M. Behrens, B. Holtz, F. Fyfe, C.A. Groat, L.A. and Raudsepp, M., (2003) Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from 29Si, 1H, and 19F MAS NMR spectroscopies American Mineralogist 88 4753 10.2138/am-2003-0106.CrossRefGoogle Scholar
Frondel, C., (1979) Crystalline silica hydrates from leached silicates American Mineralogist 64 799804.Google Scholar
Higgins, S.R. Jordan, G. and Eggleston, C.M., (2002) Dissolution kinetics of magnesite in acidic aqueous solution: a hydrothermal atomic force microscopy study assessing step kinetics and dissolution flux Geochimica et Cosmochimica Acta 66 32013210 10.1016/S0016-7037(02)00920-1.CrossRefGoogle Scholar
Jordan, G. and Rammensee, W., (1998) Dissolution rates of calcite (10-14) obtained by scanning force microscopy: Microtopography-based dissolution kinetics on surfaces with anisotropic step velocities Geochimica et Cosmochimica Acta 62 941947 10.1016/S0016-7037(98)00030-1.CrossRefGoogle Scholar
Jordan, G. Higgins, S.R. Eggleston, C.M. Swapp, S.M. Janney, D.E. and Knauss, K.G., (1999) Acidic dissolution of plagioclase. In-situ observations by hydrothermal atomic force microscopy Geochimica et Cosmochimica Acta 63 31833191 10.1016/S0016-7037(99)00225-2.CrossRefGoogle Scholar
Jordan, G. Higgins, S.R. Eggleston, C.M. Knauss, K.G. and Schmahl, W.W., (2001) Dissolution kinetics of magnesite in acidic aqueous solution, a hydrothermal atomic force microscopy (HAFM) study: Step orientation and kink dynamics Geochimica et Cosmochimica Acta 65 42574266 10.1016/S0016-7037(01)00729-3.CrossRefGoogle Scholar
Kaviratna, H. and Pinnavaia, T.J., (1994) Acid hydrolysis of octahedral Mg2+ sites in2:l layered silicates: an assessment of edge attack and gallery access mechanisms Clays and Clay Minerals 42 717723 10.1346/CCMN.1994.0420607.CrossRefGoogle Scholar
Komadel, P. Madejová, J. Janek, M. Gates, W.P. Kirkpatrick, R.J. and Stucki, J.W., (1996) Dissolution of hectorite in inorganic acids Clays and Clay Minerals 44 228236 10.1346/CCMN.1996.0440208.CrossRefGoogle Scholar
Kosuge, K. Shimada, K. and Tsunashima, A., (1995) Micropore formation by acid treatment of antigorite Chemical Materials 7 22412246 10.1021/cm00060a009.CrossRefGoogle Scholar
Lagaly, G. and Matouschek, R., (1980) The crystalline silicic acids from apophyllite, carletonite and gillespite Neues Jahrbuch für Mineralogie Abhandlungen 138 8193.Google Scholar
Lagaly, G. Beneke, K. and Weiss, A., (1975) Magadiite and H-Magadiite: II. H-Magadiite and its intercalation compounds American Mineralogist 60 650658.Google Scholar
Liang, Y. Baer, D.R. McCoy, J.M. Amonette, J.E. and LaFemina, J.P., (1996) Dissolution kinetics at the calcite-water interface Geochimica et Cosmochimica Acta 60 48834887 10.1016/S0016-7037(96)00337-7.CrossRefGoogle Scholar
Liu, C. Li, X.Y. Xu, F.L. and Huang, P.M., (2003) Atomic force microscopy of soil inorganic colloids Soil Science and Plant Nutrition 49 1723 10.1080/00380768.2003.10409974.CrossRefGoogle Scholar
Nagy, K.L. Blum, A.E. and Lasaga, A.C., (1991) Dissolution and precipitation of kaolinite at 80°C and pH 3: The dependence on solution saturation state American Journal of Science 291 649686 10.2475/ajs.291.7.649.CrossRefGoogle Scholar
Okada, K. Nakazawa, N. Kameshima, Y. Yasumori, A. Temuujin, J. MacKenzie, K.J.D. and Smith, M.E., (2002) Preparation and porous properties of materials prepared by selective leaching of phlogopite Clays and Clay Minerals 50 624632 10.1346/000986002320679503.CrossRefGoogle Scholar
Pabst, A., (1958) The crystal structure of leached gillespite, a sheet silicate American Mineralogist 43 970980.Google Scholar
Peskleway, C.D. Henderson, G.S. and Wicks, F.J., (2003) Dissolution of gibbsite: Direct observations using fluid cell atomic force microscopy American Mineralogist 88 1826 10.2138/am-2003-0103.CrossRefGoogle Scholar
Ravichandran, J. and Sivasankar, B., (1997) Properties and catalytic activity of acid-modified montmorillonite and vermiculite Clays and Clay Minerals 45 854858 10.1346/CCMN.1997.0450609.CrossRefGoogle Scholar
Rodriguez, M.A.V. Gonzalez, J.D.L. and Munoz, M.A.B., (1994) Acid activation of a Spanish sepiolite: physicochemical characterization, free silica content and surface area of products obtained Clay Minerals 29 361367 10.1180/claymin.1994.029.3.07.CrossRefGoogle Scholar
Saito, Y. Motohashi, T. Hayashi, S. Yasumori, A. and Okada, K., (1997) High thermal resistance of gamma-Al2O3 prepared by the selective leaching of calcined kaolin minerals Journal of Materials Chemistry 7 16151621 10.1039/a605891d.CrossRefGoogle Scholar
Shiraki, R. Rock, P.A. and Casey, W.H., (2000) Dissolution kinetics of calcite in 0.1 M NaCl solution at room temperature: Anatomic force microscopic (AFM) study Aquatic Geochemistry 6 87108 10.1023/A:1009656318574.CrossRefGoogle Scholar
Sogo, Y. Iizuka, F. and Yamazaki, A., (1998) Preparation and properties of layered silica and layered alumino-silica hydrate from natural apophyllite Journal of the Ceramic Society of Japan 106 160168 10.2109/jcersj.106.160.CrossRefGoogle Scholar
Temuujin, J. Burmaa, G. Amgalan, J. Okada, K. Jadambaa, T. and MacKenzie, K.J.D., (2001) Preparation of porous silica from mechanically activated kaolinite Journal of Porous Materials 8 233238 10.1023/A:1012244924490.CrossRefGoogle Scholar
Teng, H.H. Fenter, P. Cheng, L.W. and Sturchio, N.C., (2001) Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity Geochimica et Cosmochimica Acta 65 34593474 10.1016/S0016-7037(01)00665-2.CrossRefGoogle Scholar
Tossell, J.A. and Sahai, N., (2000) Calculating the acidity of silanols and related oxyacids in aqueous solution Geochimica et Cosmochimica Acta 64 40974113 10.1016/S0016-7037(00)00497-X.CrossRefGoogle Scholar
Walther, J.V., (1996) Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge American Journal of Science 296 693728 10.2475/ajs.296.7.693.CrossRefGoogle Scholar
Wieland, E. and Stumm, W., (1992) Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C Geochimica et Cosmochimica Acta 56 33393355 10.1016/0016-7037(92)90382-S.CrossRefGoogle Scholar
Yesinowski, J.P. Eckert, H. and Rossman, G.R., (1988) Characterization of hydrous species inminerals by highspeed lH MAS-NMR Journal of the American Chemical Society 110 13671375 10.1021/ja00213a007.CrossRefGoogle Scholar