Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:50:47.109Z Has data issue: false hasContentIssue false

Optical Trapping and Orientation Manipulation of 2D Inorganic Materials Using a Linearly Polarized Laser Beam

Published online by Cambridge University Press:  01 January 2024

Makoto Tominaga
Affiliation:
Graduate School of Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
Yuki Higashi
Affiliation:
Faculty of Science, Department of Biology and Chemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
Takuya Kumamoto
Affiliation:
Department of Applied Chemistry, Kyusyu Institute of Technology, 1-1 Sensui-cho, Tabata-ku, Kitakusyu-shi, Fukuoka 804-8550, Japan
Takashi Nagashita
Affiliation:
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
Teruyuki Nakato
Affiliation:
Department of Applied Chemistry, Kyusyu Institute of Technology, 1-1 Sensui-cho, Tabata-ku, Kitakusyu-shi, Fukuoka 804-8550, Japan
Yasutaka Suzuki*
Affiliation:
Graduate School of Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan Faculty of Science, Department of Biology and Chemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
Jun Kawamata
Affiliation:
Graduate School of Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan Faculty of Science, Department of Biology and Chemistry, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
*
*E-mail address of corresponding author: ysuzuki@yamaguchi-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because inorganic nanosheets, such as clay minerals, are anisotropic, the manipulation of nanosheet orientation is an important challenge in order to realize future functional materials. In the present study, a novel methodology for nanosheet manipulation using laser radiation pressure is proposed. When a linearly polarized laser beam was used to irradiate a niobate (Nb6O174-) nanosheet colloid, the nanosheet was trapped at the focal point so that the in-plane direction of the nanosheet was oriented parallel to the propagation direction of the incident laser beam so as to minimize the scattering force. In addition, the trapped nanosheet was aligned along the polarization direction of the linearly polarized laser beam.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

References

Ashkin, A., 1992 Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime Biophysical Journal 61 569582.CrossRefGoogle ScholarPubMed
Ashkin, A. Dziedzic, J.M. Bjorkholm, J.E. and Chu, S., 1986 Observation of a single-beam gradient force optical trap for dielectric particles Optics Letters 11 288290.CrossRefGoogle ScholarPubMed
Dholakia, K. Reece, P. and Gu, M., 2008 Optical micromanipulation Chemical Society Reviews 37 4255.CrossRefGoogle ScholarPubMed
Harada, Y. and Asakura, T., 1996 Radiation forces on a dielectric sphere in the Rayleigh scattering regime Optics Communications 124 529541.CrossRefGoogle Scholar
Lehmuskero, A. Johansson, P. Rubinsztein-Dunlop, H. Tong, L. and Käll, M., 2015 Laser trapping of colloidal metal nanoparticles ACS Nano 9 34533469.CrossRefGoogle ScholarPubMed
Miyamoto, N. and Nakato, T., 2004 Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K4Nb6O17 The Journal of Physical Chemistry B 108 61526159.CrossRefGoogle Scholar
Nakato, T. Kawamata, J. and Takagi, S., 2017 Inorganic Nanosheets and Nanosheet-based Materials Japan Springer.CrossRefGoogle Scholar
Nakato, T. Nakamura, K. Shimada, Y. Shido, Y. Houryu, T. Iimura, Y. and Miyata, H., 2011 Electrooptic response of colloidal liquid crystals of inorganic oxide nanosheets prepared by exfoliation of a layered niobate Journal of Physical Chemistry C 115 89348939.CrossRefGoogle Scholar
Nakato, T. Nono, Y. and Mouri, E., 2017 Textural diversity of hierarchical macroscopic structures of colloidal liquid crystalline nanosheets organized under electric fields Colloids and Surfaces A: Physicochemical and Engineering Aspects 522 373381.CrossRefGoogle Scholar
Nakato, T. Nono, Y. Mouri, E. and Nakata, M., 2014 Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals Physical Chemistry Chemical Physics 16 955962.CrossRefGoogle ScholarPubMed
Neves, A.A.R. Camposeo, A. Pagliara, S. Saija, R. Borghese, F. Denti, P. Iatì, M.A. Cingolani, R. Marag, O.M. and Pisignano, D., 2010 Rotational dynamics of optically trapped nanofibers Optics Express 18 822830.CrossRefGoogle ScholarPubMed
Ohlinger, A. Nedev, S. Lutich, A.A. and Feldmann, J., 2011 Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap Nano Letters 11 17701774.CrossRefGoogle ScholarPubMed
Okada, T. Oguchi, J. Yamamoto, K. Shiono, T. Fujita, M. and Iiyama, T., 2015 Organoclays in water cause expansion that facilitates caffeine adsorption Langmuir 31 180187.CrossRefGoogle ScholarPubMed
Suzuki, Y. Tenma, Y. Nishioka, Y. and Kawamata, J., 2012 Efficient nonlinear optical properties of dyes confined in interlayer nanospaces of clay minerals Chemistry-An Asian Journal 7 11701179.CrossRefGoogle ScholarPubMed
Tominaga, M. Oniki, Y. Mochida, S. Kasatani, K. Tani, S. Suzuki, Y. and Kawamata, J., 2016 Clay-organic hybrid films exhibiting reversible fluorescent color switching induced by swelling and drying of a clay mineral The Journal of Physical Chemistry C 120 2381323822.CrossRefGoogle Scholar
Tong, L. Miljković, V.D. and Käll, M., 2010 Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces Nano Letters 10 268273.CrossRefGoogle ScholarPubMed
Won, J. Inaba, T. Masuhara, H. Fujiwara, H. Sasaki, K. Miyawaki, S. and Sato, S., 1999 Photothermal fixation of laser-trapped polymer microparticles on polymer substrates Applied Physics Letters 75 15061508.CrossRefGoogle Scholar
Wright, W.H. Sonek, G.J. and Berns, M.W., 1994 Parametric study of the forces on microspheres held by optical tweezers Applied Optics 33 17351748.CrossRefGoogle ScholarPubMed
Wu, M. Ling, D. Ling, L. Li, W. and Li, Y., 2017 Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers Scientific Reports 7 42930.CrossRefGoogle ScholarPubMed
Yan, Z. Jureller, J.E. Sweet, J. Guffey, M.J. Pelton, M. and Scherer, N.F., 2012 Three-dimensional optical trapping and manipulation of single silver nanowires Nano Letters 12 51555161.CrossRefGoogle ScholarPubMed