Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:42:35.917Z Has data issue: false hasContentIssue false

Origin of Clay Minerals in Soils on Pyroclastic Deposits in the Island of Lipari (Italy)

Published online by Cambridge University Press:  01 January 2024

A. Mirabella*
Affiliation:
Istituto Sperimentale per lo Studio e la Difesa del Suolo — Piazza D’Azeglio 30, 50121 Firenze, Italy
M. Egli
Affiliation:
Department of Geography — Winterthurerstrasse 190, 8057 Zurich, Switzerland
S. Raimondi
Affiliation:
Dipartimento di Agronomia Ambientale e Territoriale, Universita di Palermo — V.le delle Scienze, 90128 Palermo, Italy
D. Giaccai
Affiliation:
Istituto Sperimentale per lo Studio e la Difesa del Suolo — Piazza D’Azeglio 30, 50121 Firenze, Italy
*
*E-mail address of corresponding author: aldo.mirabella@issds.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The island of Lipari (Italy) is characterized by calc-alkaline to potassic volcanism and a Mediterranean-type climate. The mineralogical and chemical features of two different soil profiles with ages of 92,000 and 10,000–40,000 y, respectively, have been investigated. There were no Andisols, but Vitric and Vertic Cambisols have developed at both sites. Although the morphology of the soils was similar, remarkable differences in the clay mineralogy between the two sites were observed. The site with the Vitric Cambisol was associated with the weathering sequence: glass → halloysite → kaolinite or interstratified kaolinite-2:1 clay minerals. Both sites had smectite in the clay fraction and, to a large extent, this smectite had a low charge and could be characterized as a dioctahedral montmorillonite. At the site with a Vertic Cambisol, smectite was the predominant mineral phase in the clay fraction. The smectites (predominantly montmorillonite) found in this soil were probably not of pedogenetic origin and are, therefore, inherited from the parent material. Their formation is due to hydrothermal alteration of glass particles during or immediately after the emplacement of the pyroclastic flow. The octahedral character of the smectites did not change from the C to the A horizon indicating that they are resistant to weathering processes. A high-charge expandable mineral was detected in small concentrations in the Vertic Cambisol and had a dioctahedral structure. In this case also, no signs of significant weathering or transformation could be detected in the soil profile. In contrast to many other investigations, no active smectite formation within the soil profiles could be measured. The subtropical and rather dry climate in Lipari might, therefore, favor the persistence of dioctahedral low-charge montmorillonites that are associated with a small amount of a high-charge expandable mineral in the soil.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Altaner, S.P. Ylagan, R.F. Savin, S.M. Aronson, J.L. Belkin, H.E. and Pozzuoli, A., (2003) Geothermometry, geochronology, and mass transfer associated with hydrothermal alteration of a rhyolitic hyaloclastite from Ponza Island, Italy Geochimica et Cosmochimica Acta 67 275288 10.1016/S0016-7037(02)01077-3.CrossRefGoogle Scholar
Bischoff, J.L., (1972) A ferroan nontronite from the Red Sea geothermal system Clays and Clay Minerals 20 217223 10.1346/CCMN.1972.0200406.CrossRefGoogle Scholar
Blakemore, L.C. Searle, P.L. and Daly, B.K., (1981) Soil bureau laboratory methods. A: Methods for chemical analysis of soils Lower Hutt, New Zealand CSIRO.Google Scholar
Borchardt, G., Dixon, J.B. and Weed, S.B., (1989) Smectites Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America Book Series 675727.Google Scholar
Boulet, R. Lucas, Y. Fritsch, E. Paquet, H., Paquet, H. and Clauer, N., (1997) Geochemical processes in tropical landscapes: role of the soil covers Soils and Sediments: Mineralogy and Geochemistry Berlin Springer Verlag 6796 10.1007/978-3-642-60525-3_4.CrossRefGoogle Scholar
Calanchi, N. Luigi Rossi, P. Sanmarchi, F. and Tranne, A., (1996) Guida escursionistica vulcanologia delle isole Eolie Viterho Union Printing S.p.A. 213.Google Scholar
Chichester, F.W. Youngherg, C.T. and Harward, M.E., (1969) Clay mineralogy of soils formed on Mazama pumice Soil Science Society of America Proceedings 33 115125 10.2136/sssaj1969.03615995003300010031x.CrossRefGoogle Scholar
Cortes, A. and Franzmeier, D.P., (1972) Climosequence of ashderived soils in the central cordillera of Colombia Soil Science Society of America Proceedings 26 653659 10.2136/sssaj1972.03615995003600040042x.CrossRefGoogle Scholar
Craig, D.C. and Loughman, F.C., (1964) Chemical and mineralogical transformations accompanying the weathering of basic volcanic rocks from New South Wales Australian Journal of Soil Research 2 218234 10.1071/SR9640218.CrossRefGoogle Scholar
Crisci, G.M. De Rosa, R. Lanzafame, G. Mazzuoli, R. Sheridan, M.F. and Zuffa, G.G., (1981) Monte Guardia sequence: a late-Pleistocene eruptive cycle on Lipari (Italy) Bulletin of Volcanology 44 241255 10.1007/BF02600562.CrossRefGoogle Scholar
Crisci, G.M. Delibrias, G. De Rosa, R. Mazzuoli, R. and Sheridan, M.F., (1983) Age and petrology of the late-Pleistocene Brown Tuffs on Lipari, Italy Bulletin of Volcanology 46 381391 10.1007/BF02597772.CrossRefGoogle Scholar
Cuadros, J. Caballero, E. Huertas, F.J. De Cisneros, C.J. Huertas, F. and Linares, J., (1999) Experimental alteration of volcanic tuff: smectite formation and effect on 18O isotope composition Clays and Clay Minerals 47 769776 10.1346/CCMN.1999.0470612.CrossRefGoogle Scholar
Dahlgren, R. Shoji, S. Nanzyo, M., Shoji, S. Nanzyo, M. and Dahlgren, R., (1993) Mineralogical characteristics of volcanic ash soils Volcanic Ash Soils. Genesis, Properties and Utilization The Netherlands Elsevier Science Publishers, Amsterdam 101143 10.1016/S0166-2481(08)70266-6.CrossRefGoogle Scholar
De La Fuente, S. Cuadros, J. Fiore, S. and Linares, J., (2000) Electron microscopy study of volcanic tuff alteration to illite-smectite under hydrothermal conditions Clays and Clay Minerals 48 339350 10.1346/CCMN.2000.0480305.CrossRefGoogle Scholar
Dixon, J.B., Dixon, J.B. and Weed, S.B., (1989) Kaolin and Serpentine Group Minerals Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America Book Series 467525.CrossRefGoogle Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.CrossRefGoogle Scholar
Fiore, S., (1993) The occurrences of smectite and illite in a pyroclastic deposit prior to weathering: implications on the genesis of 2:1 clay minerals in volcanic soils Applied Clay Science 8 249259 10.1016/0169-1317(93)90007-N.CrossRefGoogle Scholar
Fiore, S. Genovese, G. Miano, T.M., Ortega-Huertas, M. López-Galindo, A. and Palomo-Delgado, I., (1996) Organic matter migration and halloysite formation in pyroclastic deposits from Mt. Vulture (southern Italy) Advances in Clay Minerals Spain University of Granada 108109.Google Scholar
Fiore, S. Huertas, F.J. Tazaki, K. Huertas, F. and Linares, J., (1999) A low temperature experimental alteration of a rhyolitic obsidian European Journal of Mineralogy 11 15 10.1127/ejm/11/3/0455.CrossRefGoogle Scholar
Fitze, P. Kägi, B. and Egli, M., (2000) Laboranleitung zur Untersuchung von Boden und Wasser Zürich, Switzerland Geographisches Institut der Universität Zürich.Google Scholar
Frank, D., (1983) Origin, distribution, and rapid removal of hydrothermally formed clay at Mount Baker, Washington Geological Survey Professional Paper 1022-E 131.Google Scholar
Frost, R.L. Lack, D.A. Paroz, G.N. and Tran, T.H.T., (1999) New techniques for studying the intercalation of kaolinites from Georgia with formamide Clays and Clay Minerals 47 297303 10.1346/CCMN.1999.0470305.CrossRefGoogle Scholar
Glassmann, J.R., (1982) Alteration of andesite in wet, unstable soils of Oregon’s western Cascades Clays and Clay Minerals 30 253263 10.1346/CCMN.1982.0300402.CrossRefGoogle Scholar
Greene-Kelly, R., (1953) The identification of montmorillonoids in clays Journal of Soil Science 4 233237 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
Hay, R.L., (1960) Rate of formation and mineral alteration in a 4000-year-old ash soil of St. Vincent American Journal of Science 258 354368 10.2475/ajs.258.5.354.CrossRefGoogle Scholar
Inoue, A. and Utada, M., (1983) Further investigations of a conversion series of dioctahedral mica/smectites in the Shinzan hydrothermal alteration area, Northeast Japan Clays and Clay Minerals 31 401412 10.1346/CCMN.1983.0310601.CrossRefGoogle Scholar
Jenny, H., (1980) The Soil Resource New York Springer 10.1007/978-1-4612-6112-4.CrossRefGoogle Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
McIntosh, P.D., (1979) Halloysite in a New Zealand tephra and paleosol less than 2500 years old New Zealand Journal of Science 22 4954.Google Scholar
Minato, H. Kusakabe, H. Inoue, A., van Olphen, H. and Veniale, F., (1982) Alteration reactions of halloysite under hydrothermal conditions with acidic solutions Proceedings of the International Clay Conference 1981 New York Elsevier 565572.Google Scholar
Mizota, C. and Faure, K., (1998) Hydrothermal origin of smectite in volcanic ash Clays and Clay Minerals 46 178182 10.1346/CCMN.1998.0460208.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray diffraction and the Identification and Analysis of Clay Minerals 2nd edition New York Oxford University Press.Google Scholar
Ndayiragije, S. and Delvaux, B., (2004) Selective sorption of potassium in a weathering sequence of volcanic ash soils from Guadeloupe, French West Indies Catena 56 185198 10.1016/j.catena.2003.10.010.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Paquet, H., (1970) Evolution géochimique des minéreaux argileux das les altérations et des sols des climats méditerranéens tropicaux à saisons contrastées Strasbourg, France Université de Strasbourg, Memoires de la Service Carte Geologique Alsace Lorraine.Google Scholar
Paquet, H. Ruellan, A., Clauer, N. and Paquet, H., (1993) Epigenie des encroûtement calcaires (calcrètes) Coll. ‘Sédimentologie et Géochimie de la Surface’ à la Mémoire de Georges Millot Amsterdam Elsevier 1939.Google Scholar
Parfitt, R.L. and Henmi, T., (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays Soil Science and Plant Nutrition 28 183190 10.1080/00380768.1982.10432435.CrossRefGoogle Scholar
Parfitt, R.L. Russel, M. and Orbell, G.E., (1983) Weathering sequence of soils from volcanic ash involving allophane and halloysite, New Zealand Geoderma 29 4157 10.1016/0016-7061(83)90029-0.CrossRefGoogle Scholar
Pevear, D.R. Dethier, D.P. and Frank, D., (1982) Clay minerals in the 1980 deposits from Mount St. Helens Clays and Clay Minerals 30 241252 10.1346/CCMN.1982.0300401.CrossRefGoogle Scholar
Prudêncio, MI S Braga, M.A. Paquet, H. Waerenborgh, J.C. Pereira, L.C.J. and Gouveia, M.A., (2002) Clay mineral assemblages in weathered basalt profiles from central and southern Portugal: climatic significance Catena 49 7789 10.1016/S0341-8162(02)00018-8.CrossRefGoogle Scholar
Quantin, P., (1990) Specificity of the halloysite-rich tropical or subtropical soils Transactions, 14th International Congress of Soil Science, Kyoto, 1990 VII 1621.Google Scholar
Raimondi, S. Lupo, M. and Tusa, D., (1999) II clima ed il pedoclima dei suoli vulcanici dell’Etna Sicilia Foreste VI 23 27.Google Scholar
Raimondi, S. Poma, I. and Frenda, A.S., (1997) II pedoclima come fattore di sensibilità ambientale: esempio di metodologia applicata all’agro di Sparacia — Cammarata (AG) Rivista di Agronomia XXXI 726733.Google Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat Lösung Zeitschrift Pfianzenernährung Düng Bodenkunde 105 195202.Google Scholar
Shoji, S. Nanzyo, M. and Dahlgren, R.A., (1993) Volcanic Ash Soils. Genesis, Properties and Utilization Amsterdam Elsevier.Google Scholar
Shoval, S., (2004) Deposition of volcanogenic smectite along the southeastern Neo-Tethys margin during the oceanic convergence stage Applied Clay Science 24 299311 10.1016/j.clay.2003.08.009.CrossRefGoogle Scholar
Singer, A. Zarei, M. Lange, F.M. and Stahr, K., (2004) Halloysite characteristics and formation in the northern Golan Heights Geoderma 123 279295 10.1016/j.geoderma.2004.02.012.CrossRefGoogle Scholar
Soil Conservation Service,Black, C.A., (1972) Determination of free iron oxides Methods of Soil Analysis Madison, Wisconsin American Society of Agronomy 311312.Google Scholar
Soil Survey Staff, Keys to Soil Taxonomy (2003) ninth edition.Google Scholar
Thomthwaite, C.W. and Mather, J.R., (1957) Instructions and tables for computing potential evapotranspiration and the water balance Climatology 10 181311.Google Scholar
Ugolini, F.C. and Dahlgren, R.A., (2003) Soil development in volcanic ash Global Environmental Research 6 6981.Google Scholar
Velde, B., (1992) Introduction to Clay Minerals. Chemistry, Origins, Uses and Environmental Significance London Chapman & Hall 10.1007/978-94-011-2368-6.CrossRefGoogle Scholar
Vidales, J.L.M. Sanz, J.L. Guijarro, J. Hoyos, M.A. and Casas, J., (1985) Smectite origins in the volcanic soils of the Calatrava region (central Spain) 5thMeeting of the European Clay Groups, Prague 465470.Google Scholar
Vizcaíno, C. García Gonzales, M.Z. and García Vicente, J., (1979) Suelos vulcánicos españoles Anales Edafologia Agrobiologia XXXVIII 431445.Google Scholar
Wada, K., (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate American Mineralogist 46 7891.Google Scholar
Wilson, M.J., Schultz, L.G. Olphen, H v and Mumpton, F.A., (1987) Soil smectites and related interstratified minerals: Recent developments Proceedings of the International Clay Conference 1985 Boulder, Colorado The Clay Minerals Society 167173.Google Scholar
WRB, World Reference Base for Soil Resources (1998) Rome FAO.Google Scholar