Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-20T07:02:54.210Z Has data issue: false hasContentIssue false

Palygorskite in Indian tropical soils: a clay mineral of pedogenic, geogenic, or climate-induced origin – a mechanistic review

Published online by Cambridge University Press:  18 September 2024

Pankaj Srivastava*
Affiliation:
Department of Geology, University of Delhi, Delhi 110007, India
Dilip Kumar Pal
Affiliation:
Formerly Principal Scientist, Division of Soil Resource Studies, Indian Council of Agricultural Research-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440033, Maharashtra, India
*
Corresponding author: Pankaj Srivastava; Email: pankajps@gmail.com

Abstract

Most clay minerals are characterized by a platy morphology. By contrast, palygorskite has a fibrous morphology and is structurally distinct from the typical 1:1 and 2:1 layer structures. Diverse opinions exist on the origin of palygorskite in soils. Many authors suggest that palygorskite forms after smectite. Others favor its authigenesis during pedogenic processes or its inheritance from the parent material. This review provides a critical synthesis on the origin of palygorskite in the semi-arid-tropical (SAT) Vertisols and arid calcic soils of the Thar Desert of India. It also highlights the specific genetic pathway for the presence of palygorskite in the soils. The ubiquitous association of smectite with palygorskite is inadequate to explain the formation at the expense of smectite, because at pH 8.2 and above the smectite structure is subjected to dissolution to create soluble Si and Al, and the recrystallization of the soluble Si and Al to form palygorskite may not be possible in the Vertisols of the Indian SAT environment. Thus, mildly to moderate alkaline pedochemcial environments of the SAT Vertisols do not favor authigenic precipitation of the palygorskite in such soils. This review shows that the presence of palygorskite in the SAT Vertisols is due to its inheritance from the exhumed inter-trappean beds, infra-trappean beds, and bole beds. This view on the genesis of the palygorskite is also justified by its presence in weakly developed calcic soils of the Thar Desert as detrital flux from the adjoining marine sedimentary rocks.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abtahi, A. (1977). Effect of a saline and alkaline ground water on soil genesis in semi-arid southern Iran. Soil Science Society of America Journal, 41, 583588.CrossRefGoogle Scholar
Bigham, J.M., Jaynes, W.T., & Allen, B.L. (1980). Pedogenic degradation of sepiolite and palygorskite on the Texas high plains. Soil Science Society America Journal, 44, 159167.CrossRefGoogle Scholar
Bhattacharyya, T., Pal, D.K., & Deshpande, S.B. (1993). Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt. Journal of Soil Science, 44, 159171.CrossRefGoogle Scholar
Bhattacharyya, T., Ray, S.K., Chandran, P., Karthikeyan, K., & Pal, D.K. (2018). Soil quality and fibrous mineral in black soils of Maharashtra. Current Science, 115, 482492.CrossRefGoogle Scholar
Callen, R.A. (1984). Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. In Singer, A., & Galan, E. (eds), Palygorskite-Sepiolite Occurrences, Genesis and Uses (pp. 137). Elsevier, Amsterdam.Google Scholar
Daoudi, L. (2004). Palygorskite in the uppermost Cretaceous–Eocene frocks from Marrakech High Atlas, Morocco. Journal of African Earth Sciences, 39, 353358.CrossRefGoogle Scholar
Deshmukh, H.V., Chandran, P., Pal, D. K., Ray, S. K., Bhattacharyya, T., & Potdar, S.S. (2014). A pragmatic method to estimate plant available water capacity (PAWC) of rainfed cracking clay soils (Vertisols) of Maharashtra, Central India. Clay Research, 33, 114.Google Scholar
Dhir, R.P., Tandon, S.K., Sareen, B.K., Rao, T.K.G., Kailath, A.J., & Sharma, N. (2004). Calcretes in the Thar desert: genesis, chronology and palaeoenvironment. Proceedings of Indian Academy of Sciences, 113, 473515.Google Scholar
Dhir, R.P., Tandon, S.K., Singhvi, A.K., Kar, A.K., & Sareen, B.K. (2009). Soil profile modification, genesis, chronology and paleo-environmental interpretations from paleosols in a multi-episode aeolian section in Western Rajasthan. Journal of Indian Society of Soil Science, 57, 225236.Google Scholar
Ducloux, J., Delhoume, J.P., Petit, S., & Decarreau, A. (1995). Clay differentiation in Aridisols of northern Mexico. Soil Science Society of America Journal, 59, 269276.CrossRefGoogle Scholar
Elangovan, D. (1985). Reappraisal Hydrogeological Studies in Parts of the Purna Alluvial Valley, Akola District, Maharashtra. Central Groundwater Board: Nagpur.Google Scholar
Elprince, A.M., Mashhady, A.S., & Aba-Husayn, M.M. (1979). The occurrence of pedogenic palygorskite (attapulgite) in Saudi Arabia. Soil Science, 128, 211218.CrossRefGoogle Scholar
Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R., & Sandler, A. (1999). High resolution Holocene environmental changes in the Thar Desert, northwestern India. Science, 284, 125128.CrossRefGoogle ScholarPubMed
Galán, E., & Pozo, M. (2011). Palygorskite and sepiolite deposits in continental environments: Description, genetic patterns and sedimentary settings. In Galán, E.. & Singer, A. (eds), Development in Clay Science (pp. 125173). Elsevier, Amsterdam.Google Scholar
Geological Map of India (1993). Scale 1:5,000,000. Geological Survey of India, Hyderabad, India.Google Scholar
Hameed, A., Raja, A., Ali, M., Upreti, N., Kumar, N., Tripathi, J.K., & Srivastava, P. (2018). Micromorphology, clay mineralogy, and geochemistry of calcic soils from western Thar Desert: implications for origin of palygorskite and southwestern monsoonal fluctuations over the last 30 ka. Catena, 163, 378398.CrossRefGoogle Scholar
Heidari, A., Mahmoodi., Sh., Roozitalab, M.H., & Mermut, A.R. (2008). Diversity of clay minerals in the Vertisols of three different climatic regions in western Iran. Journal of Agricultural Science and Technology, 10, 269284.Google Scholar
Hillier, S. & Pharande, A. L. (2008). Contemporary formation of palygorskite in irrigation induced saline-sodic, shrink-swell soils of Maharashtra, India. Clays and Clay Minerals, 56, 531548.CrossRefGoogle Scholar
Ghose, B., Singh, S., & Kar, A. (1977). Desertification around the Thar: a geomorphological interpretation. Annals of Arid Zone, 16, 290301.Google Scholar
IMD (2009). Normal Annual Rainfall Map of India. http://www.imd.gov.in/ (accessed 7 August 2017).Google Scholar
Jones, B.F., & Galán, E. (1988). Sepiolite and palygorskite. In Bailey, S.W. (ed), Hydrous Phyllosilicates. Reviews in Mineralogy (pp. 631674). Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Kadir, S., & Eren, M. (2008). The occurrence and genesis of clay minerals associated with Quaternary caliches in the Mersin area, southern Turkey. Clays and Clay Minerals, 56, 244258.CrossRefGoogle Scholar
Kadu, P.R., Vaidya, P.H., Balpande, S.S., Satyavathi, P.L.A., & Pal, D.K. (2003). Use of hydraulic conductivity to evaluate the suitability of Vertisols for deep-rooted crops in semi-arid parts of central India. Soil Use and Management, 13, 208216.CrossRefGoogle Scholar
Kar, A. (1995). Geomorphology of arid western India. Memoir Geological Society of India, 32, 168190.Google Scholar
Kar, A. (1999). Neotectonic and climatic controls on drainage evolution in the Thar Desert. In Paliwal, B.S. (ed.), Geological Evolution of North-western India (pp. 246259). Scientific Publishers, Jodhpur, India.Google Scholar
Kar, A., Singhvi, A.K., Rajaguru, S.N., Juyal, N., Thomas, J.V., Banerjee, D., & Dhir, R.P. (2001). Reconstruction of the late Quaternary environment of the lower Luni plains, Thar Desert, India. Journal of Quaternary Science, 16, 6168.3.0.CO;2-G>CrossRefGoogle Scholar
Keller, G., Adatte, T., Bajpai, S., Mahobey, D. M., Widdowson, M., Khosla, A., Sharma, R., Khosla, S. C., Gertsch, B., Fleitmann, D., & Sahani, A. (2009). K-T transition in Deccan Traps of Central India marks major Seaway across India. Earth and Planetary Science Letters, 282, 1023.CrossRefGoogle Scholar
Khademi, H., & Mermut, A.R. (1998). Source of palygorskite in gypsiferous Aridisols and associated sediments from central Iran. Clay Minerals, 33, 561578.CrossRefGoogle Scholar
Kolhe, A.H., Chandran, P., Ray, S.K., Bhattacharyya, T., Pal, D.K., & Sarkar, D. (2011). Genesis of associated red and black shrink-swell soils of Maharashtra. Clay Research, 30, 111.Google Scholar
Mashhady, A. S., Reda, M., Wilson, M.J., & Mackenzie, R. C. (1980). Clay and silt mineralogy of some soils from Qasim, Saudi Arabia. Journal of Soil Science, 31, 101115.CrossRefGoogle Scholar
Millot, M. G., Paquet, H., & Ruellan, A. (1969). Neoformation de l’attapulgite daus les sols a caparaces de la Basse Monlouya (Maroc oriental). Comptes Rendus de l’Académie des Sciences. Série D: Sciences Naturelles, 268, 27712774.Google Scholar
Moharana, P.C., Gaour, M.K., Chaoudhary, J.S., Chauhan, J.S., & Rajpurohit, R.S. (2013). A system of geomorphological mapping for Western Rajasthan with relevance for agricultural land use. Annals of Arid Zone, 52, 163180.Google Scholar
Monger, H.C., & Daugherty, L.A. (1991). Neoformation of palygorskite in a southern New Mexico Aridisols. Soil Science Society of America Journal, 55, 16461650.CrossRefGoogle Scholar
Neaman, A., & Singer, A. (2004). The effects of palygorskite on chemical and physico-chemical properties of soils: a review. Geoderma, 123, 297303.CrossRefGoogle Scholar
Neaman, A., Singer, A., & Stahr, K. (1999). Clay mineralogy as affecting disaggregation in some palygorskite-containing soils of the Jordan and Bet-She’an Valleys. Australian Journal of Soil Research, 37, 913928.CrossRefGoogle Scholar
Owliaie, H.R., Abtahi, A., & Heck, R.J. (2006). Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134, 6281.CrossRefGoogle Scholar
Pal, D.K. (2019). Simple Methods to Study Pedology and Edaphology of Indian Tropical Soils. Springer International Publishing AG.CrossRefGoogle Scholar
Pal, D.K. (2020). Mineralogy class of Indian cracking clay soils (Vertisols and intergrades) in the US Soil Taxonomy: a critical appraisal. Clay Research, 39, 110126.CrossRefGoogle Scholar
Pal, D.K., & Deshpande, S.B. (1987). Characteristics and genesis of minerals in some benchmark Vertisols of India. Pedologie, 37, 259275.Google Scholar
Pal, D.K., Deshpande, S.B., Venugopal, K.R., & Kalbande, A.R. (1989). Formation of di- and trioctahedral smectite as evidence for paleoclimatic changes in southern and central Peninsular India. Geoderma, 45, 175184.CrossRefGoogle Scholar
Pal, D.K., Dasog, G.S., Vadivelu, S., Ahuja, R.L., & Bhattacharyya, T. (2000). Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Lal, R., Kimble, R.J.M., Eswaran, H., and Stewart, B.A. (eds), Global Change and Pedogenic Carbonates (pp. 149185), Lewis Publishers, Boca Raton, FL, USAGoogle Scholar
Pal, D.K., Bhattacharyya, T., Ray, S.K., & Bhuse, S.R. (2003). Developing a model on the formation and resilience of naturally degraded black soils of the Peninsular India as a decision support system for better land use planning. NRDMS, DST Project Report, NBSSLUP (ICAR), Nagpur, India.Google Scholar
Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L., & Bhuse, S. R. (2006). Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the peninsular India in redefining the sodic soils. Geoderma, 136, 210228.CrossRefGoogle Scholar
Pal, D. K., Bhattacharyya, T., Chandran, P., Ray, S. K., Satyavathi, P. L. A., Durge, S. L., Raja, P., & Maurya, U. K. (2009). Vertisols (cracking clay soils) in a climosequence of Peninsular India: evidence for Holocene climate changes. Quaternary International, 209, 621.CrossRefGoogle Scholar
Pal, D. K., Wani, S. P., & Sahrawat, K. L. (2012). Vertisols of tropical Indian environments: pedology and edaphology. Geoderma, 189–190, 2849.CrossRefGoogle Scholar
Pal, D. K., Bhattacharyya, T., Sahrawat, K. L. & Wani, S. P. (2016). Natural chemical degradation of soils in the Indian semi-arid tropics and remedial measures. Current Science, 110, 16751682.CrossRefGoogle Scholar
Pandey, D.K., Choudhary, S., Bahadur, T., Swami, N., Poonia, D., & Sha, J. (2012). A review of the Lower-lowermost Upper Jurassic facies and stratigraphy of the Jaisalmer Basin, western Rajasthan, India. Volumina Jurassica, 10, 6182.Google Scholar
Paul, R., Karthikeyan, K., Vasu, D., Sahoo, S., Tiwary, P., Gaikwad, S.S., & Chandran, P. (2020). Predicament in identifying clay palygorskite in Vertisols of Chhattisgarh Basin, India. Clay Research, 39, 7788.CrossRefGoogle Scholar
Paul, R., Karthikeyan, K., Vasu, D., Tiwary, P., & Chandran, P. (2021). Origin and mineralogy of nano clays of Indian Vertisols and their implications in selected soil properties. Eurasian Soil Science, 54, 572585.CrossRefGoogle Scholar
Piper, C.S. (1950). Soil and Plant Analysis. The University of Adelaide, Adelaide, Australia.Google Scholar
Prasad, S., & Enzel, Y. (2006). Holocene paleoclimates of India. Quaternary Research, 66, 442453.CrossRefGoogle Scholar
Rengasamy, P., Sarma, V.A.K., Murthy, R.S., & Krishnamurti, G.S.R. (1978). Mineralogy, genesis and classification of ferruginous soils of the eastern Mysore plateau, India. Journal of Soil Science, 29, 431445.CrossRefGoogle Scholar
Richards, E.A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook No. 60, United States Salinity Laboratory, United States Department of Agriculture.CrossRefGoogle Scholar
Roy, P.D., Nagar, Y.C., Juyal, N., Smykartz-Kloss, W., & Singhvi, A.K. (2009). Geochemical signatures of Late Holocene paleo-hydrological changes from Phulera and Pokharan saline playas near the eastern and western margins of the Thar Desert, India. Journal of Asian Earth Science, 34, 275286.CrossRefGoogle Scholar
Roy, P., Parthasarathy, G., & Sreenivas, B. (2023). Clay minerals and adsorption of fullerenes: clues from iridium-enriched Cretaceous-Palaeogene Anjar intertrappean beds, Kachchh district, Gujrat, India. Current Science, 124, 8793.CrossRefGoogle Scholar
Sarma, V.A.K., & Sidhu, P.S. (1982). Genesis and transformation of clay minerals. In Randhawa, N.S. et al. (eds), Review of Soil Research in India, Part II (pp. 718724). 12th International Congress of Soil Science, New Delhi, India.Google Scholar
Shadfan, H., & Mashhady, A.S. (1985). Distribution of palygorskite in sediments and soils of Eastern Saudi Arabia. Soil Science Society of America Journal, 49, 243250.CrossRefGoogle Scholar
Shrivastava, J.P., Salil, M.S., & Pattanayak, S. K. (2000). Clay mineralogy of Ir-bearing Anjar Intertrappeans, Kutch, Gujarat, India: inferences on paleoenvironment. Journal of the Geological Society of India, 55, 197206.Google Scholar
Siddiqui, M.K.H. (1967). Palygorskite clays from Andhra Pradesh, India. Clay Minerals, 7, 120123.CrossRefGoogle Scholar
Singer, A. (1979). Palygorskite in sediments: detrital, diagenetic or neo formed. A critical review. Geology, 68, 9961008.Google Scholar
Singer, A. (1984). Pedogenic palygorskite in the arid environment. In Singer, A. & Galán, E. (eds), Palygorskite-Sepiolite (pp. 169175), Developments in Sedimentology, vol. 37. Elsevier, Amsterdam,Google Scholar
Singer, A. (1989). Palygorskite and sepiolite group minerals. In Dixon, J.B. & Weed, S.B. (eds), Minerals in Soil Environment (pp. 829872). Soil Science Society America, Madison, WI, USA.Google Scholar
Singer, A. (2002). Palygorskite and sepiolite. In Dixon, J.B. & Schulze, D.G. (eds), Soil Mineralogy with Environmental Applications (pp. 555583). SSSA Book Series, vol. 7, Soil Science Society of America, Madison, WI, USA.Google Scholar
Singer, A., & Norrish, K. (1974). Pedogenic palygorskite occurrences in Australia. American Mineralogist, 59, 508517.Google Scholar
Sombroek, W.G. (1981). The use of palygorskite as diagnostic criteria in soil classification. Pedologie, 31, 121122.Google Scholar
Srivastava, P., Bhattacharyya, T., & Pal, D.K. (2002). Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (Vertisols) of India. Clays and Clay Minerals, 50, 111126CrossRefGoogle Scholar
Srivastava, A.K., Kandwal, N.K., Krishnakumar, A., & Krishnan, K.A. (2020). Clay minerals from the Lameta Formation of Pandhari area, districts Amravati, Maharashtra and Betul, Madhya Pradesh: its paleoclimatic implications. Journal of Earth System Science, 129, 19.CrossRefGoogle Scholar
Vaidya, P.H., & Pal, D.K. (2002). Microtopography as a factor in the degradation of Vertisols in central India. Land Degradation and Development, 13, 429445.CrossRefGoogle Scholar
Wasson, R.J., Smith, G.I., & Agarwal, D.P. (1984). Late Quaternary sediments, minerals and inferred geochemical history of Didwana lake. Palaeogeography Palaeoclimatology Palaeoecology, 46, 345372.CrossRefGoogle Scholar
Watts, N.L. (1980). Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology, 27, 661686.CrossRefGoogle Scholar
Weaver, C.E., & Beck, K.C. (1977). Miocene of the S.E. United States: a model for chemical sedimentation in a peri-marine environment. Sedimentary Geology, 17, 1234.CrossRefGoogle Scholar
Wilson, M.J. (2013). Rock-Forming Minerals , Vol. 3c , Sheet Silicates-Clay Minerals (2nd edition), 724 pp. The Geological Society, London.Google Scholar
Xie, Q., Chen, T., Zhou, H., Xu, X., Xu, H., Ji, J., Lu, H., & Balsam, W. (2013). Mechanism of palygorskite formation in the red clay formation on the Chinese loess plateau, northern China. Geoderma, 192, 3949.CrossRefGoogle Scholar
Yaalon, D.H., & Wieder, M. (1976). Pedogenic palygorskite in some arid brown (calciorthid) soils of Israel. Clay Minerals, 11, 7380.CrossRefGoogle Scholar
Zade, S.P., Chandran, P., & Pal, D.K. (2017). Role of calcium carbonate and palygorskite in enhancing exchangeable magnesium to impair drainage of Vertisols of semi-arid western India. Clay Research, 36, 3345.Google Scholar