Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T12:43:43.115Z Has data issue: false hasContentIssue false

Polymerization and Transalkylation Reactions of Toluene on Cu(II)-Montmorillonite

Published online by Cambridge University Press:  28 February 2024

T. Tipton
Affiliation:
Civil Engineering Laboratory, Air Force Civil Engineering Support Agency, Tyndall Air Force Base, Florida 32403-5319
L. E. Gerdom
Affiliation:
Division of Natural Science, Mobile College, Mobile, Alabama 36663-0220
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Products resulting from the reaction of toluene with Cu(II)-montmorillonite were analyzed using GC/MS, HPLC/MS, GPC, and FTIR methods. Numerous oligomers of toluene were observed, extending at least as high as the resolution limit (1500 g/mol) of the GPC column. The FTIR spectrum of the nonvolatile components of the extract was very similar to that of liquid toluene. GC/MS data on the volatile components revealed dimers, trimers, and a multitude of transmethylated products. Oligomerization proceeded via both ring-ring (i.e., polyphenyl) and ring-methyl linkages. The primary trans-methylated products were tert-butylbenzene and isopropylxylene, indicating a competition between ringand side-chain methylations. The side-chain substitutions cannot be explained in terms of the aromatic radical cation intermediate which typically forms in arene/clay reactions. A consideration of alkylbenzene reactions observed in various other media suggests that the present transmethylation reactions occur via a benzyl cation intermediate.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Aneke, L. E., Gerritsen, L A v d Berg, P. J. and de Jong, W. A., 1979 The disproportionation of toluene over a HY/β-AlF3/Cu catalyst J. Catal 59 2636 10.1016/S0021-9517(79)80041-X.CrossRefGoogle Scholar
Buchanan, A C I Chapman, D. M. and Smith, G. P., 1985 Redox vs. Lewis acid catalysis. The chemistry of 1,2-diarylethanes in SbCl3-rich molten salt media J. Org. Chem 50 17021711 10.1021/jo00210a026.CrossRefGoogle Scholar
Buchanan, A C I Dworkin, A. S. and Smith, G. P., 1983 Molten salt catalysis. Selective bond cleavage reactions for some α, -diphenylalkanes in SbCl3 melts J. Am. Chem. Soc 105 28432850 10.1021/ja00347a053.CrossRefGoogle Scholar
Carrado, K. A., Hayatsu, R., Botto, R. E. and Winans, R. E., 1990 Reactivity of anisoles on clay and pillared clay surfaces Clays & Clay Minerals 38 250256 10.1346/CCMN.1990.0380303.CrossRefGoogle Scholar
Chiou, C. T. and Shoup, T. D., 1985 Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity Environ. Sci. Technol 19 11961200 10.1021/es00142a010.CrossRefGoogle ScholarPubMed
Doner, H. E. and Mortland, M. M., 1969 Benzene complexes with copper(II) montmorillonite Science 166 14061407 10.1126/science.166.3911.1406.CrossRefGoogle ScholarPubMed
Elder, V. A., Proctor, B. L. and Hites, R. A., 1981 Organic compounds found near dump sites in Niagara Falls, New York Environ. Sci. Technol 15 12371243 10.1021/es00092a015.CrossRefGoogle ScholarPubMed
Fenn, D. B., Mortland, M. M. and Pinnavaia, T. J., 1973 The chemisorption of anisole on Cu(II) hectorite Clays & Clay Minerals 21 315322 10.1346/CCMN.1973.0210507.CrossRefGoogle Scholar
Hawthorne, S. B. and Miller, D. J., 1987 Extraction and recovery of polycyclic aromatic hydrocarbons from environmental solids using supercritical fluids Anal. Chem 59 17051708 10.1021/ac00140a026.CrossRefGoogle ScholarPubMed
Horio, M., Suzuki, K., Masuda, H. and Mori, T., 1991 Alkylation of toluene with methanol on alumina-pillared montmorillonite Appl. Catal 72 109118 10.1016/0166-9834(91)85032-Q.CrossRefGoogle Scholar
Johnston, C. T., Tipton, T., Stone, D. A., Erickson, C. and Trabue, S. L., 1991 Chemisorption of p-dimethoxyben-zene on copper-montmorillonite Langmuir 7 289296 10.1021/la00050a015.CrossRefGoogle Scholar
Kovacic, P. and Ramsey, J. S., 1969 Polymerization of aromatic nuclei. XIV. Polymerization of toluene with aluminum chloride-cupric chloride J. Polym. Sci., A-1 7 111125 10.1002/pol.1969.150070111.CrossRefGoogle Scholar
La Lau, C. and Snyder, R. G., 1971 A valence force field for alkyl benzenes: Toluene, p-xylene, m-xylene, mesity-lene, and some of their deuterated analogues Spectrochim. Acta 20732088.CrossRefGoogle Scholar
Laszlo, P., 1987 Chemical reactions on clays Science 235 14731477 10.1126/science.235.4795.1473.CrossRefGoogle ScholarPubMed
Matsunaga, Y., 1972 The diffuse reflection spectra of bentonites colored with various aromatic compounds and related ion-radical salts Bull. Chem. Soc. Japan 45 770775 10.1246/bcsj.45.770.CrossRefGoogle Scholar
McLafferty, F. W. and Stauffer, D. B., 1988 The Wiley/NBS Registry of Mass Spectral Data 5th New York Wiley-Inter-science.Google Scholar
Mortland, M. M., 1970 Clay-organic complexes and interactions Advan. Agron 22 75114 10.1016/S0065-2113(08)60266-7.CrossRefGoogle Scholar
Mortland, M. M. and Boyd, S. A., 1989 Polymerization and dechlorination of chloroethenes on Cu(II)-smectite via radical-cation intermediates Environ. Sci. Technol 23 223227 10.1021/es00179a015.CrossRefGoogle Scholar
Mortland, M. M. and Halloran, L. J., 1976 Polymerization of aromatic molecules on smectite Soil Sci. Soc. Amer. J 40 367370 10.2136/sssaj1976.03615995004000030019x.CrossRefGoogle Scholar
Pinnavaia, T. J. and Mortland, M. M., 1971 Interlamellar metal complexes on layer silicates. I. Copper (II)-arene complexes on montmorillonite J. Phys. Chem 75 39573962 10.1021/j100695a007.CrossRefGoogle Scholar
Pinnavaia, T. J., Hall, P. L., Cady, S. S. and Mortland, M. M., 1974 Aromatic radical cation formation on the intracrystal surfaces of transition layer lattice silicates J. Phys. Chem 78 994999 10.1021/j100603a010.CrossRefGoogle Scholar
Sawhney, B. L., Kozloski, R. K., Isaacson, P. J. and Gent, MPN, 1984 Polymerization of 2,6-dimethylphenol on smectite surfaces Clays & Clay Minerals 32 108114 10.1346/CCMN.1984.0320204.CrossRefGoogle Scholar
Schriesheim, A., 1961 Toluene disproportionation J. Org. Chem 26 35303533 10.1021/jo01067a615.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1985 Reactions of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonite studied by resonance Raman spectroscopy. 2. Monosubstituted benzenes and 4,4-disubstituted biphenyls J. Phys. Chem 89 738742 10.1021/j100251a004.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1986 The oxidative polymerization of aromatic molecules in the interlayer of montmorillonites studied by resonance Raman spectroscopy J. Contaminant Hydrology 1 95106 10.1016/0169-7722(86)90009-4.CrossRefGoogle Scholar
Theng, B. K. G., 1971 Mechanisms of Formation of Colored Clay-Organic Complexes. A Review Clays & Clay Minerals 19 383390 10.1346/CCMN.1971.0190606.CrossRefGoogle Scholar
Tricker, M. J., Tennakoon, D T B Thomas, J. M. and Graham, S. H., 1975 Novel reactions of hydrocarbon complexes of metal-substituted sheet silicates: Thermal dimerisation of trans-stilbene Nature 253 110111 10.1038/253110a0.CrossRefGoogle Scholar
Uguina, M. A., Sotelo, J. L. and Serrano, D. P., 1991 Toluene disproportionation over ZSM-5 zeolite—Effects of crystal size, silicon-to-aluminum ratio, activation method and pelletization Appl. Catal 76 183198 10.1016/0166-9834(91)80046-Y.CrossRefGoogle Scholar