Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T14:27:54.894Z Has data issue: false hasContentIssue false

Porphyrin Adsorption by Clay Minerals

Published online by Cambridge University Press:  01 July 2024

David R. Kosiur*
Affiliation:
Department of Geological Sciences, State University of New York at Buffalo, Buffalo, NY 14226, U.S.A.
*
*Present address: Department of Earth and Space Sciences, University of California, Los Angeles, CA 90024, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study was undertaken to investigate the adsorption of hemin, protoporphyrin and hematoporphyrin by kaolinite and a Ca-montmorillonite in aqueous solutions buffered at pH 4 and 9.

Although experimental restrictions at pH 4 prevented the complete characterization of the adsorption isotherms, kaolinite did exhibit a saturation of exchange sites by the cationic porphyrins. Both kaolinite and montmorillonite displayed a similar saturation of sites by the porphyrins in their anionic forms at pH 9. The major differences in the adsorption isotherms are attributed to differences in the exchange capacities of the clays.

Adsorption of the porphyrins at pH 9 was inhibited largely by phosphate treatment of the clays; this effect is interpreted as blockage of the anion exchange sites by irreversibly-bound phosphate.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Alexander, A. E. (1937) Monolayers of porphyrins and related compounds: J. Chem. Soc. 18131816.CrossRefGoogle Scholar
Bache, B. W. (1974) Aluminium and iron phosphate studies relating to soils. II. Reactions between phosphate and hydrous oxides: J. Soil Sci. 15, 110116.CrossRefGoogle Scholar
Barrett, J. (1969) Porphyrins (excluding chlorophyll porphyrins): In Data for Biochemical Research (Edited by Dawson, R. M. C., Elliott, D. C. Elliott, W. H. and Jones, K. M.) second edition, pp. 300313. Oxford University Press, Oxford.Google Scholar
Bates, R. G. (1973) Determination of pH. Theory and Practice, second edition: John Wiley, New York.CrossRefGoogle Scholar
Bowden, J. W., Bolland, M. D. A., Posner, A. M. and Quirk, J. P. (1973) Generalized model for anion and cation adsorption at oxide surfaces: Nature Phys. Sci. 245, 8183.CrossRefGoogle Scholar
Brill, A. S. and Sandberg, H. E. (1968) Spectral studies of iron coordination in hemeprotein complexes: difference spectroscopy below 250 nm: Biochem. J. 8, 669690.Google Scholar
Brown, S. B., Jones, P. and Suggett, A. (1968) Reaction between haemin and hydrogen peroxide. Part 1: Ageing and non-destructive oxidation of haemin: Trans. Faraday Soc. 64, 986993.CrossRefGoogle Scholar
Busenberg, E. and Clemency, C. V. (1973) Determination of the cation exchange capacity of clays and soils using an ammonia electrode: Clays and Clay Minerals 21, 213217.CrossRefGoogle Scholar
Casagrande, D. J. and Hodgson, G. W. (1974) Generation of homologous porphyrins under simulated geochemical conditions: Geochim. Cosmochim. Acta 38, 17451758.CrossRefGoogle Scholar
Douglas, L. A. and Fiessinger, F. (1971) Degradation of clay minerals by H2O2 treatments to oxidize organic matter: Clays and Clay Minerals 19, 6768.CrossRefGoogle Scholar
Falk, J. E. (1964) Porphyrins and Metalloporphyrins: Elsevier, Amsterdam.Google Scholar
Grim, R. E. (1968) Clay Mineralogy, second edition: McGraw-Hill, New York.Google Scholar
Hayward, D. O. and Trapnell, B. M. W. (1964) Chemisorption, second edition, pp. 169176: Butterworths, London.Google Scholar
Hodgson, G. W. and Baker, B. L. (1967) Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions: Nature 216, 2932.CrossRefGoogle ScholarPubMed
Hodgson, G. W., Baker, B. L. and Peake, E. (1967) Geochemistry of porphyrins: In Aspects of Petroleum Geochemistry (Edited by Nagy, B. and Colombo, U.) , pp. 177259. Elsevier. Amsterdam.Google Scholar
Hodgson, G. W. and Hitchon, B. (1959) Primary degradation of chlorophyll under simulated petroleum source rock sedimentation conditions: Bull. Am. Ass. Petrol. Geol. 43, 24812492.Google Scholar
Hofmann, U., Weiss, A., Koch, G., Mehler, A. and Scholz, A. (1956) Intracrystalline swelling, cation exchange, and anion exchange of minerals of the montmorillonite group and of kaolinite: Clays and Clay Minerals 4, 273287.Google Scholar
Kaufherr, N., Yariv, S. and Heller, L. (1971) The effect of exchangeable cations on the sorption of chlorophyllin by montmorillonite: Clays and Clay Minerals 19, 193200.CrossRefGoogle Scholar
Maehly, A. C. and Akeson, A. (1958) Stabilization of aqueous hemin solutions: Acta Chem. Scand. 12, 12591273.CrossRefGoogle Scholar
Morell, D. B. (1969) Iron porphyrins (haems, haematins): In Data for Biochemical Research (Edited by Dawson, R. M. C., Elliott, D. C. Elliott, W. H., and Jones, K. M.) , second edition, pp. 314317. Oxford University Press, Oxford.Google Scholar
Muljadi, D., Posner, A. M. and Quirk, J. P. (1966) The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Part I. The isotherms and the effect of pH on adsorption: J. Soil Sci. 17, 212229.CrossRefGoogle Scholar
Peake, E., Baker, B. L. and Hodgson, G. W. (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada—II. The contribution of amino, acids, hydrocarbons and chlorins to the Beaufort Sea by the Mackenzie River system: Geochim. Cosmochim. Acta 36, 867884.CrossRefGoogle Scholar
Phillips, J. N. (1960) The ionization and coordination behaviour of porphyrins: Rev. Pure Appl. Chem. 10, 3560.Google Scholar
Reeder, S. W., Hitchon, B. and Levinson, A. A. (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada—I. Factors controlling inorganic composition: Geochim. Cosmochim. Acta 36, 825866.CrossRefGoogle Scholar
Shack, J. and Clark, W. M. (1947) Metalloporphyrins. VI. Cycles of changes in systems containing heme: J. Biol Chem. 171, 143187.CrossRefGoogle Scholar
Treibs, A. (1934a) Über das Verkommen von Chlorophyllderivaten in einem Ölschiefer aus der oberen Trias: Ann. Chem. 509, 103114.CrossRefGoogle Scholar
Treibs, A. (1934b) Chlorophyll- und Häminderivate in bituminösen Gesteinen. Erdölen, Erdwachsen, und Asphalten: Ann. Chem. 510, 4262.CrossRefGoogle Scholar
Treibs, A. (1936) Chlorophyll- und Häminderivate in organischen Mineralstoffen: Angew. Chem. 49, 682686.CrossRefGoogle Scholar
Vandenbelt, J. M. and Henrich, C. (1953) Spectral anomalies produced by the overlapping of absorption bands: Appl. Spectrosc. 7, 171176.CrossRefGoogle Scholar
van Olphen, H. (1963) An Introduction to Clay Colloid Chemistry, pp. 239243: Interscience. New York.Google Scholar
Weiss, A. and Roloff, G. (1964) Hämin-Montmorillonit und seine Bedeutung für die Gestlegung der oberen Temperaturgrenze bei der Bildung des Erdöls: Z. Naturforsch. 19B, 533534.CrossRefGoogle Scholar