Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T08:47:55.313Z Has data issue: false hasContentIssue false

Preparation of Montmorillonite-Nylon Complexes and Their Thermal Properties

Published online by Cambridge University Press:  01 July 2024

Chuzo Kato
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan 160
Kazuyuki Kuroda
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan 160
Masahiro Misawa
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan 160
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Montmorillonite-aminocaproic acid complexes (monomer complexes) were prepared by the intercalation of 6-aminocaproic acid to various homoionic (Na+, Ca2+, Mg2+, Co2+, and Cu2+) montmorillonites. Infrared spectra of the monomer complexes indicated that the interaction between the exchangeable cations and the 6-aminocaproic acid increased in the following order: Na-, Ca-, and Mg- < Co- < Cu-montmorillonite-aminocaproic acid complex. Montmorillonite-nylon complexes (polymer complexes) were prepared by thermal treatment of the monomer complexes, which was confirmed by X-ray powder diffraction and infrared spectroscopy the results of which indicated the condensation of 6-aminocaproic acid in the interlayer space.

Thermal degradation of montmorillonite-nylon complexes was studied by thermogravimetry. It was found that the thermal stability of the polymer complexes increased in the following order: Cu- < Co- < Na- < Mg- < Ca-montmorillonite-nylon complex.

It was suggested that the difference in thermal stability depended upon the length of the polymer chain which might be influenced by the interaction between the exchangeable cations and the 6-aminocaproic acid. The activation energy for the thermal degradation of each montmorillonite-nylon complex was obtained, and the value for Cu-montmorillonite-nylon complex was smaller than that for the other cation-exchanged montmorillonite-nylon complexes.

Резюме

Резюме

Комплексы монтмориллонит-аминокапроновая кислота (мономерные комплексы) были приготовлены интеркалацией 6-аминокапроновой кислоты в различные гомоионные (Na+, Са2+, Mg2+, Со2+, и Си2+-) монтмориллониты. Инфракрасные спектры мономерных комплексов указывали, что взаимодействие между обменными катионами и 6-аминокапроновой кислотой возрастает в следующем порядке: Na-, Са-, и Mg- <Со- <Си-монтмориллонит-аминокапроновый кислотный комплекс. Комплексы монтмориллонит-нейлон (полимерные комплексы) приготавливались термальной обработкой мономерных комплексов, наличие которых подтверждалось порошковым методом рентгеноструктурного анализа и инфракрасной спектроскопией, которые указывали на конденсацию 6-аминокапроновой кислоты в межслойных промежутках.

Термальная деградация комплексов монтмориллонит-нейлон изучалась с помощью термогравиметрии. Было обнаружено, что термальная стабильность полимерных комплексов возрастает в следующем порядке: Си- <Со- <Na- <Mg- <Са-монтмориллонит-нейлоновый комплекс.

Предполагается, что различие в термальной стабильности зависит от длины полимерной цепи, на которую должно влиять взаимодействие обменных катионов и 6-аминокапроновой кислоты. Была получена активационная энергия для термальной деградаций каждого комплекса монтмориллонит-нейлон, и ее значение для комплекса Cu-монтмориллонит-нейлон оказалось меньше, чем для других катионно-обменных комплексов монтмориллонит-нейлон.

Resümee

Resümee

Montmorillonit-Aminocapronsäure Komplexe (monomere Komplexe) wurden durch die Interkalation von 6-Aminocapronsäure in verschiedene homoionische (Na+, Ca2+, Mg2+, Co2+, und Cu2+) Montmorilloniten hergestellt. Infrarotspektren der monomerischen Komplexe deuteten an, daß der Einfluß, den die austauschbaren Kationen und die 6-Aminocapronsäure aufeinander haben, in der folgenden Richtung zunimmt: Na-, Ca-, und Mg- <Co- <Cu-Montomrillonit-Aminocapronsäurekomplex. Montmorillonit-Nylonkomplexe (polymere Komplexe) wurden durch die thermische Behandlung der monomeren Komplexe präpariert, was durch Röntgenpulverdiagramme und Infrarotspektroskopie, welche die Kondensation von 6-Aminocapronsäure in den Zwischenschichträumen andeuten, bestätigt wurde. Thermische Degradation von Montmorillonit-Nylonkomplexen wurde mittles Thermo- gravimetrie untersucht. Es wurde gefunden, daß die thermische Stabilität der polymeren Komplexe folgendermaßen zunimmt: Cu- <Co- <Na- <Mg- <Ca-Montmorillonit-Nylonkomplex. Es wurde vorgeschlagen, daß der Unterschied in den thermischen Stabilitäten von der Länge der polymeren Kette abhängt, welche durch die Einwirkung der austauschbaren Kationen auf die 6-Aminocapron- säure beeinflußt sein könnte. Die Aktivierungsenergie für die thermische Degradation für jeden Montmorillonit-Nylonkomplex wurde erhalten; der Wert für den Cu-Montmorillonit-Nylonkomplex war niedriger als für die anderen Kation-Montmorillonit-Nylonkomplexe.

Résumé

Résumé

Des complexes montmorillonite-acide aminocaproique (complexes monomères) ont été préparés par intercalation d'acide aminocaproique-6 à diverses montmorillonites (Na+, Ca2+, Mg2+, Co2+, et Cu2+) homoioniques. Les spectres infrarouges des complexes monomères ont indiqué que l'action entre les cations échangeables et l'acide aminocaproique-6, croît dans l'ordre suivant; le complexe acide aminocaproique-montmorillonite-Na, Ca, Mg <-Co <-Cu. Les complexes montmorillonites-nylon (complexes polymères) ont été préparés par traitement thermique de complexes monomères, ce qui a été confirmé au moyen de la diffraction aux rayons-X et la spectroscopie infrarouge dont les résultats ont indiqué la condensation de l'acide aminocaproique-6 dans l'espace interfeuillet. La dégradation thermique des complexes montmorillonite-nylon a été étudiée par thermogravimétrie. On a trouvé que la stabilité thermique des complexes polymères croît dans l'ordre suivant; les complexes nylon-montmorillonite- Cu <-Co <-Na <-Mg <-Ca. Il a été suggéré que la différence de stabilité thermique dépendait de la longueur de la chaîne polymère qui pourrait être influencée par l'interaction entre les cations échangeables et l'acide aminocaproique-6. L’énergie d'activation pour la dégradation thermique de chaque complexe nylon-montmorillonite a été obtenue et la valeur du complexe nylon-montmorillonite-Cu était plus petite que celles des complexes nylon-montmorillonite à cations échangés.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Blumstein, A. (1965a) Polymerization of adsorbed monolayers. I. Preparation of the clay-polymer complex: J. Polym. Sci. Part A 3, 26532664.Google Scholar
Blumstein, A. (1965b) Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer: J. Polym. Sci. Part A 3, 26652672.Google Scholar
Blumstein, A. and Billmeyer, F. W. Jr. (1966) Polymerization of adsorbed monolayers. III. Preliminary structure studies in dilute solution of the inserted polymers: J. Polym. Sci. Part A-2 4, 465474.CrossRefGoogle Scholar
Blumstein, A., Blumstein, R., and Vanderspurt, T. H. (1969) Polymerization of adsorbed monolayers. IV. The two-dimensional structure of insertion polymers: J. Colloid Interface Sci. 31, 236247.CrossRefGoogle Scholar
Blumstein, A., Malhotra, S. L., and Parikh, K. K. (1972) Polymerization of monolayers. VII. Influence of the exchangeable cation on the polymerization rate of methylmethacrylate monolayers adsorbed on montmorillonite: J. Colloid Interface Sci. 41, 318327.Google Scholar
Blumstein, A., Malhotra, S. L., and Watterson, A. C. (1970) Polymerization of monolayers. V. Tacticity of the insertion poly(methyl methacrylate): J. Polym. Sci. Part A-2 8, 15991615.CrossRefGoogle Scholar
Blumstein, A., Parikh, K. K., Malhotra, S. L., and Blumstein, R. (1971) Polymerization of monolayers. VI. Influence of the nature of the exchangeable ion on the tacticity of insertion poly(methyl methacrylate): J. Polym. Sci. Part A-2 9, 16811691.CrossRefGoogle Scholar
Gieseking, J. E. (1939) Mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals: Soil Sci. 47, 113.CrossRefGoogle Scholar
Hendricks, S. B. (1941) Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces: J. Phys. Chem. 45, 6581.CrossRefGoogle Scholar
Imoto, S. (1963) The reaction between polyvinyl alcohol and clay: Kagaku To Kogyo (Tokyo), (Chemistry and Chemical Industry) 16, 442450.Google Scholar
MacEwan, D. M. C. (1944) Identification of the montmorillonite group of minerals by X-rays: Nature 154, 577578.CrossRefGoogle Scholar
Reich, L., Lee, H. T., and Levi, D. W. (1963) Note on the thermal degradation of teflon: J. Polym. Sci. Part B 1, 535538.CrossRefGoogle Scholar
Shirai, H. and Hojo, N. (1974) Function of polymer-metal complexes: Sen-i Gakkaishi (Journal of the Society of Fiber Science and Technology) 30, 220231.Google Scholar
Solomon, D. H. (1968) Clay minerals as electron acceptors and/or electron donors in organic reactions: Clays & Clay Minerals 16, 3139.CrossRefGoogle Scholar
Solomon, D. H. and Loft, B. C. (1968) Reaction catalyzed by minerals. Part III. The mechanism of spontaneous interlamellar polymerizations in aluminosilicates: J. Appl. Polym. Sci. 12, 12531262.CrossRefGoogle Scholar
Solomon, D. H. and Rosser, M. J. (1965) Reaction catalyzed by minerals. Part I. Polymerization of styrene: J. Appl. Polym. Sci. 9, 12611271.CrossRefGoogle Scholar