Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T13:17:43.013Z Has data issue: false hasContentIssue false

Quantitative Mineralogy of Clay-Rich Siliciclastic Landslide Terrain of the Sorrento Peninsula, Italy, Using a Combined XRPD And XRF Approach

Published online by Cambridge University Press:  01 January 2024

M. Cesarano*
Affiliation:
DiSTAR, Università degli Studi di Napoli Federico II, 80134 Napoli, Italy
D.L. Bish
Affiliation:
Dept. of Geological Sciences, Indiana University, 47405 Bloomington, Indiana, USA
P. Cappelletti
Affiliation:
DiSTAR, Università degli Studi di Napoli Federico II, 80134 Napoli, Italy
F. Cavalcante
Affiliation:
Institute of Methodologies for Environmental Analysis-CNR, 85050 Tito Scalo, Potenza, Italy
C. Belviso
Affiliation:
Institute of Methodologies for Environmental Analysis-CNR, 85050 Tito Scalo, Potenza, Italy
S. Fiore
Affiliation:
Institute of Methodologies for Environmental Analysis-CNR, 85050 Tito Scalo, Potenza, Italy
*
*E-mail address of corresponding author: mara.cesarano@unina.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Quantitative mineralogical analysis of clay-bearing rocks is often a non-trivial problem because clay minerals are characterized by complex structures and are often affected by structural disorder, layer-stacking disorder, and interstratification. In the present study, internal-standard Rietveld X-ray powder diffraction (XRPD) analyses were combined with X-ray fluorescence (XRF) chemical analyses for the mineralogical characterization and quantitative analysis of heterogeneous clay-rich sedimentary rocks that are involved in a slow-moving landslide in the Termini-Nerano area, Sorrento Peninsula (Italy), in order to investigate the relationship between the mineralogy of these rocks and landslides. Slow-moving landslides are usually considered to be associated with the more weathered and surficial parts of structurally complex slopes, and mineralogical analysis can help to clarify the degree of weathering of siliciclastic rocks. XRPD quantitative analyses were conducted by combining the Rietveld and internal standard methods in order to calculate the amounts of poorly ordered phyllosilicate clays (considered amorphous phases in Rietveld refinements) by difference from 100%. The vbAffina program was used to refine the amounts of mineral phases determined with XRPD using the element compositions determined by XRF analysis. XRPD analyses indicated that the samples mainly contain several different clay minerals, quartz, mica, and feldspars. Analysis of the clay fraction identified kaolinite, chlorite, and interstratified illite-smectite (I-S) and chlorite-smectite (C-S). The mineralogy of the materials involved in the landslide in comparison with the mineralogy of the “undisturbed” rocks showed that the landslide is located in the weathered realm that overlies an arkosic bedrock. The interstratified I-S and C-S occurred at landslide activity locations and confirmed that areas more susceptible to sliding contained the most weathered parts of the rocks and perhaps represent areas of past and currently active fluid flow.

Type
Article
Copyright
Copyright © Clay Minerals Society 2018

References

Bianconi, G. (1840) Storia Naturale dei Terreni Ardenti, dei Vulcani Fangosi, delle Sorgenti Infiammabili, dei Pozzi Idropirici e di Altri Fenomeni Geologici Operati dal Gas Idrogene e dalla Origine di Esso Gas. Marsigli, Bologna, 164 pp.Google Scholar
Bish, D.L. (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays and Clay Minerals 41, 738744.CrossRefGoogle Scholar
Bish, D.L. and Chipera, S.J. (1987) Problems and solution in quantitative analysis of complex mixture by X-ray powder diffraction. Advances in X-ray Analysis, 31, 295307.CrossRefGoogle Scholar
Bish, D.L. and Howard, S.A. (1988) Quantitative phase analysis using the Rietveld technique. Journal of Applied Crystallography, 21, 8691.CrossRefGoogle Scholar
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Chapter 7, pp. 411 –438 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Monograph 5. Mineralogical Society, London.CrossRefGoogle Scholar
Calcaterra, D., Croce, C., de Luca Tupputi Schinosa, F., Di Martire, D., Parise, P., Ramondini, M., Borrelli, E., Salzano, M., and Serricchio, A. (2006) The Colle Lapponi-Piano Ovetta landslide (Agnone, Molise, Italy), an example of rainfall-induced reactivation in weathered structurally complex materials. Geophysical Research Abstracts, 8. European Geosciences Union.Google Scholar
Calcaterra, D., Cal, F., Cappelletti, P., de'Gennaro, M., Di Martire, D., Parise, M., and Ramondini, M. (2007) Mineralogical and geotechnical characterization of large earthflow in weathered structurally complex terrains of the Molise region, Italy. Geophysical Research Abstracts.Google Scholar
Calvert, C.S., Palkovsky, DA., and Pevear, D.R. (1989) A combined X-ray powder diffraction and chemical method for the quantitative mineral analysis of geologic samples.pp. 154166 in: Quantitative Mineral Analysis of Clays (Pevear, D.R. and Mumpton, FA., editors). CMS Workshop Lectures 1. The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Cascini, L., Bonnard, C., Corominas, J., Jibson, R., and Montero-Olarte, J. (2005) Landslide hazard and risk zoning for urban planning and development. State of the art report. Proceedings of the International Conference on Landslide Risk Management. Taylor and Francis, London, 199235.Google Scholar
Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G., and Tateo, F. (2007) Illite-smectite in sicilic shales and piggy-back deposits of the Gorgoglione Formation (Southern Apennines): Geological Inferences. Italian Journal of Geoscience, 126, 241254.Google Scholar
Chipera, S.J. and Bish, D.L. (2002) FULLPAT: A full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. Journal of Applied Crystallography, 35, 744749. doi: 10.1107/S0021889802017405.CrossRefGoogle Scholar
Cotecchia, V. and Melidoro, G. (1966) Geologia e frana di Termini Nerano (Penisola Sorrentina). Geologia Applicata e Idrogeologia, 1, 93126.Google Scholar
Cruden, D.M. and Varnes, D.J. (1996) Landslides types and processes. Pp. 36–75 in: Landslides: Investigation and Mitigation (Turner, A.K., Schuster, R.J., editors), Special Report 247 pp. Transportation Research Board, National Academy Press, Washington, DC.Google Scholar
De Ruan, C. and Ward, C.R. (2002) Quantitative X-ray powder diffraction analysis of clay minerals in Australia coals using Rietveld methods. Applied Clay Science, 21, 227240.CrossRefGoogle Scholar
Di Bucci, D., Parotto, M., Adatte, T., Gianpaolo, C., and Kubler, B. (1996) Mineralogia delle argille varicolori dell'Appennino centrale: Risultati preliminari e prospettive di ricerca. Bollettino della Societa Geologica Italiana, 115, 689700.Google Scholar
Dollase, WA. (1986) Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. Journal of Applied Crystallography, 19, 267272.CrossRefGoogle Scholar
Dumon, M., Tolossa, A.R., Capon, B., Detavernier, C., and Van Ranst, E. (2014) Quantitative clay mineralogy of a Vertic Planosol in southwestern Ethiopia: Impact on soil formation hypotheses. Geoderma, 214–215, 184196.CrossRefGoogle Scholar
Graf, D.L. (1961) Crystallographic tables for the rhombohedral carbonates. American Mineralogist, 46, 12831316.Google Scholar
Harlow, G.E. and Brown, G.E. (1980) Low albite: An X-ray and neutron diffraction study. American Mineralogist, 65, 986995.Google Scholar
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite in Devonian lacustrine mudrocks, Orcadian basin, Scotland. Clays and Clay Minerals, 41, 240259.CrossRefGoogle Scholar
Iannace, A., Merola, D., Perrone, V., Amato, A., and Cinque, A. (2015) Note illustrative della carta geologica d'Italia alla scala 1: 50.000 Foglio 466–485 Sorrento-Termini. Servizio Geologico d'Italia, ISPRA, 204 pp.Google Scholar
Klug, H.P. and Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. J. Wiley and Sons, New York, 992 pp.Google Scholar
Le Page, Y. and Donnay, G. (1976) Refinement of the crystal structure of low-quartz. Acta Crystallographica, section B 32, 24562459.CrossRefGoogle Scholar
Leoni, L., Saitta, M., and Sartori, F. (1989) Analisi mineralogica quantitative di rocce e sedimenti pelitici mediante combinazione di dati diffrattometrici e chimici. Rendiconti della Società Geologica Italiana di Mineralogia e Petrografia, 43, 743756.Google Scholar
Leoni, L., Lezzerini, M., and Saitta, M. (2008) Calcolo computerizzato dell'analisi mineralogica quantitativa di rocce e sedimenti argillosi basato sulla combinazione dei dati chimici e diffrattometrici. Atti della Società Toscana de Scienze Naturali di Pisa, Serie A, 113, 6369.Google Scholar
Leoni, L., Lezzerini, M., Battaglia, S., and Cavalcante, F. (2010) Corrensite and chlorite-rich Chl-S mixed layers in sandstones from the ‘Macigno’ Formation (northwestern Tuscany, Italy). Clay Minerals, 45, 87106.CrossRefGoogle Scholar
Liang, J. and Hawthorne, F.C. (1996) Rietveld refinement of micaceous materials: Muscovite-2M1, a comparison with single-crystal structure refinement. The Canadian Mineralogist, 34, 115122.Google Scholar
MacEwan, D.M.C. and Wilson, J. (1984) Interlayer and intercalation complexes of clay minerals, Chapter 3, Pp. 197248, in: Crystal Structures of Clay Minerals and Minerals and Their X-Ray Identification (Brindley, G.W. and Brown, G., editors). Mineralogical Society, London.Google Scholar
Maggi, F. (2003) Influenza Della Composizione del Liquido Interstiziale Sulla Resistenza dei Terreni Argillosi a Struttura Complessa. Ph.D. thesis in Dottorato di Ricerca in Ingegneria Geotecnica, University of Naples Federico II.Google Scholar
Maggi, F. and Pellegrino, A. (2002) Sperimentazione in sito sul miglioramento della resistenza di un'argilla attiva con modifica del liquido interstiziale. Incontro Annuale dei Ricercatori di Geotecnica IARG, 14.Google Scholar
Mansour, M.F., Morgenstern, N.R., and Martin, CD. (2011) Expected damage from displacement of slow moving slides. Landslide, 8, 117131.CrossRefGoogle Scholar
Meunier, A., Inoue, A., and Beaufort, D. (1991) Chemiographic analysis of trioctahedral smectite-to-chlorite conversion series from the Ohyu caldera, Japan. Clays and Clay Minerals, 39, 409415.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. second edition. Oxford University Press, Oxford and New York, 378 pp.Google Scholar
Omosoto, O., McCarty, D.K., Hillier, S., and Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54, 748760.CrossRefGoogle Scholar
Pearson, M.J. (1978) Quantitative clay mineralogical analyses from the bulk chemistry of sedimentary rocks. Clays and Clay Minerals, 26, 423433.CrossRefGoogle Scholar
Phillips, M.W. and Ribbe, P.H. (1973) The structure of monoclinic potassium-rich feldspars, American Mineralogist, 58, 263270.Google Scholar
P.A.I., Piano per l'assetto idrogeologico (2011) Carta inventario dei fenomeni franosi e della relativa intensità in funzione delle massime velocita attese (scala 1: 5000). Autorità di bacino regionale destra sele. Regione Campania.Google Scholar
Picarelli, L. and Russo, C. (2004) Remarks on the mechanisms of slow active landslides and the interaction with man-made works. in: Proceedings of the IX International Symposium on Landslide Rio de Janeiro, Brazil, (Lacerda, W., editor) 2, 11411176. DOI: 10.201/b16816 –169.Google Scholar
Rule, A.C. and Bailey, S.W. (1987) Refinement of the crystal structure of a monoclinic ferroan clinochlore. Clays and Clay Minerals, 35, 129138.CrossRefGoogle Scholar
Shen, S., Zaidi, S.R., Mutuairi, B.A., Shehry, A.A., Sitepu, H., Hamoud, S.A., Khaldi, F.S., and Edhaim, FA. (2012) Quantitative XRD bulk and clay mineralogical determination of paleosol section of Unayzah and basal KHUFF clastics in Saudi Arabia. Powder Diffraction, 27, 126130.CrossRefGoogle Scholar
Slaughter, M. (1989) Quantitative determination of clays and other minerals in rocks. Pp. 120121 in: Quantitative Mineral Analysis of Clays (Pevear, D.R. and Mumpton, F.A., editors). CMS Workshop Lectures 1. The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Smith, D.K., Johnson, G.G. Jr., Scheible, W., Wims, A.M., Johnson, J.L., and Ullmann, G. (1987) Quantitative X-ray powder diffraction method using the full diffraction pattern. Powder Diffraction, 2, 7377.CrossRefGoogle Scholar
Snyder, R.L. and Bish, D.L. (1989) Quantitative analysis. Chapter 5, Pp. 101144 in: Reviews In Mineralogy, Volume 20: Modern Powder Diffraction (Bish, D.L. and Post, J.E., editors.), Mineralogical Society of America, Blacksburg, Virginia, USA.CrossRefGoogle Scholar
Son, B.K., Yoshimura, T., and Fukusawa, H. (2001) Diagenesis of dioctahedral and trioctahedral smectite from alternating beds in Miocene to Pleistocene rocks of the Niigata Basin, Japan. Clays and Clay Minerals, 49, 333346.CrossRefGoogle Scholar
Środoń, J. (2002) Quantitative mineralogy of sedimentary rocks with emphasis on clays and with applications to K-Ar dating. Mineralogical Magazine, 66, 677687.CrossRefGoogle Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C., and Eberl, D.D. (2001) Quantitative X-ray diffraction analysis of clay bearing rocks from random preparation. Clays and Clay Minerals, 49, 514528.CrossRefGoogle Scholar
Takeda, H. and Ross, M. (1975) Mica polytypism: Dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. American Mineralogist, 60, 10301040.Google Scholar
Taylor, R.K. and Cripps, J.C. (1987) Weathering effects: Slopes in mudrocks and over consolidated clay. Chapter 13 in: Slope Stability (Anderson, M.G. and Richards, K.S., editors) 405445.Google Scholar
Taylor, R.K. and Spears, DA. (1981) The breakdown of British coal measure rocks. International Journal of Rock Mechanics and Mining Sciences, 7, 481501.CrossRefGoogle Scholar
Uneno, H., Jige, M., Sakamoto, T., Balce, G.R., and Deguchi, I. (2008) Geology and clay mineralogy of the landslides area in Guisaugon, Southern Leyte Island, Philippines. University Bulletin of Chiba Institute of Science, 1, 9 pp.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R., and Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.CrossRefGoogle Scholar
Ufer, K., Kleeberg, R., Bergmann, J., and Dohrmann, R. (2012) Rietveld refinement of disordered illite-smectite mixed layer structures by a recursive algorithm. II: Powder-pattern refinement and quantitative phase analysis. Clays and Clay Minerals, 60, 535552.CrossRefGoogle Scholar
Velde, B. (1995) Origin and Mineralogy of Clays: Clays and the Environment. Edition 1, Springer-Verlag, Berlin, Heidelberg, 334 pp.CrossRefGoogle Scholar