Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T14:22:36.089Z Has data issue: false hasContentIssue false

Raman Spectroscopic Study of Kaolinite in Aqueous Suspension

Published online by Cambridge University Press:  02 April 2024

Clifford T. Johnston*
Affiliation:
Department of Soil and Environmental Sciences, University of California Riverside, California 92521
Garrison Sposito
Affiliation:
Department of Soil and Environmental Sciences, University of California Riverside, California 92521
Robert R. Birge*
Affiliation:
Department of Chemistry, University of California Riverside, California 92521
*
3Present address: Department of Soil Science, University of Florida, Gainesville, Florida 32611.
4Present address: Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The vibrational modes of clay minerals in aqueous suspension are uniquely accessible to Raman spectroscopy, but this potentially powerful approach has not been applied heretofore to study clays in aqueous samples. In this paper, Raman spectra in the 100- to 4000-cm−1 region were obtained for kaolinite in aqueous suspension and in air-dry samples. Contact with water perturbed the low-wavenumber Raman spectrum (100 to 1000 cm−1) significantly with respect to relative band intensities and resulted in a pH dependence of the integrated intensity in the OH-stretching region. Comparison of the Raman and infrared (IR) spectra of air-dry kaolinite samples confirmed five Raman-active OH-stretching modes at 3621, 3652, 3668, 3688, and 3696 cm−1, in contrast to four IR-active modes at 3621, 3652, 3668, and 3695 cm−1. The Raman spectra of two kaolinites of different origin showed differences in band positions and intensities. These results suggest that Raman spectroscopy may provide a useful method to study clay mineral-water interactions, colloidal behavior in clay suspensions, and variations in clay mineral structure.

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356.CrossRefGoogle Scholar
Bevington, P. R., 1977 Data Reduction and Error Analysis for the Physical Sciences New York McGraw-Hill 237245.Google Scholar
Estep, P. A., Kouach, J. J. and Karr, C., 1968 Quantitative infrared multicomponent determinations of minerals in coal Anal. Chem. 40 358363.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates Ch. 15 in The Infrared Spectra of Minerals London Mineralogical Society 331363.CrossRefGoogle Scholar
Giese, R. F. Jr., 1982 Theoretical studies of the kaolin minerals: electrostatic calculations Bull. Soc. Fr. Mineral. Crystallogr. 105 417424.Google Scholar
Ishii, M., Shimanouchi, T. and Nakahira, M., 1967 Far infra-red absorption spectra of layer silicates Inorg. Chim. Acta 1 387392.CrossRefGoogle Scholar
Johnston, C. T., 1983 A Raman spectroscopic study of kaolinite California Ph.D. dissertation, Univ. California, Riverside 7178.Google Scholar
Johnston, C. T., Sposito, G., Bocian, D. F. and Birge, R. R., 1984 Vibrational spectroscopic study of the interlamellar kaolinite-dimethylsulfoxide complex J. Phys. Chem. 88 59595964.CrossRefGoogle Scholar
Kerr, P. F., 1951 Preliminary Reports, Reference Clay Minerals, American Petroleum Institute Project No. 49 New York American Petroleum Institute, Columbia University.Google Scholar
Larson, S. J., Pardoe, G. W. F., Gebbie, H. A. and Larson, E. E., 1972 The use of far infrared interferometric spectroscopy for mineral identification Amer. Mineral. 57 9981002.Google Scholar
Ledoux, R. L. and White, J. L., 1964 Infrared study of selective deuteration of kaolinite and halloysite at room temperature Science 145 4749.CrossRefGoogle ScholarPubMed
Maddams, W. F. and Mead, M. L., 1982 The measurement of derivative IR spectra. I. Background studies Spectro-chimica Acta 38A 437444.CrossRefGoogle Scholar
Prost, R., 1984 Etude par spectroscopie infrarouge à basse température des groupes OH de structure de la kaolinite, de la dickite et de la nacrite Agronomie 4 403406.CrossRefGoogle Scholar
Rand, R. and Melton, I. E., 1975 Isoelectric point of the edge surface of kaolinite Nature 257 214216.CrossRefGoogle Scholar
Rouxhet, P. G., Samudacheata, N., Jacobs, H. and Anton, O., 1977 Attribution of the OH stretching bands of kaolinite Clay Miner. 12 171178.CrossRefGoogle Scholar
Schofield, R. K. and Samson, H. R., 1954 Flocculation of kaolinite due to the attraction of oppositely charged crystal faces Disc. Faraday Soc. 18 138145.CrossRefGoogle Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Clay Minerals 31 357366.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J.J., 1979 Data Handbook for Clay Materials and Other Non-metallic Minerals New York Pergamon Press.Google Scholar
Wada, K., 1967 A study of hydroxyl groups in kaolin minerals utilizing selective deuteration and infrared spectroscopy Clay Miner. 7 5156.CrossRefGoogle Scholar
White, J. L., Laycock, A. and Cruz, M., 1970 Infrared studies of proton delocalization in kaolinite Bull. Groupe Franc. Argiles 22 157165.CrossRefGoogle Scholar
Wiewiora, A., Wieckowski, T. and Sokolowska, A., 1979 The Raman spectra of kaolinite sub-group minerals and of pyrophyllite Arch. Mineral. 135 514.Google Scholar
Wilson, E. B., Decius, J. C. and Cross, P. C., 1955 Molecular Vibrations New York McGraw-Hill 3453.Google Scholar