Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T13:56:16.207Z Has data issue: false hasContentIssue false

Reactivity of Anisoles on Clay and Pillared Clay Surfaces

Published online by Cambridge University Press:  02 April 2024

Kathleen A. Carrado
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Ryoichi Hayatsu
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Robert E. Botto
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Randall E. Winans
Affiliation:
Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pillared bentonites were found to be efficient catalysts for the O-methyl bond cleavage of anisoles (e.g., m-methylanisole, guaiacol, and creosol) under very mild, static conditions (150°C, a few hours, inert atmosphere). The O-methyl bond cleavage led to phenolic products. Gas chromatographymass spectrometry and solid-state 13C nuclear magnetic resonance (NMR) techniques used to probe 13C-labeled anisoles revealed that dealkylation and transalkylation reactions occurred to a large extent, and that conversion was efficient at >95% after two days. Ortho- and para-isomers were observed exclusively, without any evidence of meta-substitution. Volatile products were determined by mass spectrometry to be 13CH3OH and (13CH3)2O. Magic-angle spinning 13C NMR experiments showed that the molecules were fairly mobile in the clay micropores prior to catalysis. After catalysis, cross-polarization NMR showed that molecular motion had decreased markedly. Ultraviolet-visible spectroscopy of the colored complexes suggested some quinone formation. The trend of clay reactivity was found to be: pillared bentonite ≫ acid-washed montmorillonite > untreated bentonite > pillared fluorhectorite ≃ untreated fluorhectorite.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Adler, E., 1977 Lignin chemistry—past, present and future Wood Sci. Technot 11 169218.CrossRefGoogle Scholar
Aronson, M. T., Forte, R. J., Farneth, W. E. and White, D., 1989 l3C NMR identification of intermediates formed by 2-methyl-2-propanol adsorption in H-ZSM-5 J. Amer. Chem. Soc 111 840846.CrossRefGoogle Scholar
Barrer, R. M. and Jones, D. L., 1970 Chemistry of soil minerals. Part VIII. Synthesis and properties of fluorhectorites J. Chem. Soc. (A) 15311537.CrossRefGoogle Scholar
Botto, R. E., 1987 Solid 13C NMR tracer studies to probe coalification J. Energy & Fuels 1 228230.CrossRefGoogle Scholar
Carrado, K. A., Kostapapas, A., Suib, S. L. and Coughlin, R. W., 1986 Physical and chemical stabilities of pillared clays containing transition metal ions Solid State Ionics 22 117125.CrossRefGoogle Scholar
Carrado, K. A., Suib, S. L., Skoularikis, N. D. and Coughlin, R. W., 1986 Chromium(III)-doped pillared clays (PILCs) Inorg. Chem 25 42174221.CrossRefGoogle Scholar
Fyfe, C. A., Thomas, J. M. and Lyerla, J. R., 1981 NMR spectroscopic investigation of intercalation compounds of organic molecules and sheet silicates—p-Xylene-hectorite and related systems Angew. Chem. Int. Ed. Engl 20 9697.CrossRefGoogle Scholar
Hayatsu, R., McBeth, R. L., Scott, R. G., Botto, R. E. and Winans, R. E., 1984 Artificial coalification study: Preparation and characterization of synthetic macerais Org. Geochem 6 463471.CrossRefGoogle Scholar
Horner, L. and Weber, K. H., 1967 Darstellungen und Eigenschaften weiterer Chinone des Biphenyls Chem. Ber 100 28422853.CrossRefGoogle Scholar
Isaacson, P. J. and Sawhney, B. L., 1983 Sorption and transformation of phenols on clay surfaces: Effect of exchangeable cations Clay Miner 18 253265.CrossRefGoogle Scholar
Lahav, N., Shani, V. and Shabtai, J., 1978 Cross-linked smectites. I. Synthesis and properties of hydroxy-alumi-num-montmorillonite Clays & Clay Minerals 26 107115.CrossRefGoogle Scholar
Lussier, R. J., Magee, J. S., Vaughan, D. E. W., Waukeand, S. E. and Chakrabartty, S. K., 1980 Pillared interlayered clay (PILC) cracking catalysts—Preparation and properties Proc. 7th Canadian Symposium on Catalysis, Edmonton, 1980 Edmonton, Alberta Alberta Research Coonco 88.Google Scholar
Mortland, M. M. and Halloran, L. J., 1976 Polymerization of aromatic molecules on smectite Soil Sci. Soc. Amer. J 40 367370.CrossRefGoogle Scholar
Occelli, M. L., 1983 Catalytic cracking with an interlayered clay. A two-dimensional molecular sieve Ind. Eng. Chem. Prod. Res. Dev 22 553559.CrossRefGoogle Scholar
Occelli, M. L. and Lester, J. E., 1985 Nature of active sites and coking reactions in a pillared clay mineral Ind. Eng. Chem. Prod. Res. Dev 24 2732.CrossRefGoogle Scholar
Occelli, M. L. and Tindwa, R. M., 1983 Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars Clays & Clay Minerals 31 2228.CrossRefGoogle Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371.CrossRefGoogle ScholarPubMed
Poncelet, G., Schutz, A. and Setton, R., 1986 Pillared montmorillonite and beidellite. Acidity and catalytic properties Chemical Reactions in Organic and Inorganic Constrained Systems Dordrecht, The Netherlands D. Reidel 165.CrossRefGoogle Scholar
Salman, S. R. and Kamounah, F. S., 1987 Conformational effect on carbon-13 chemical shifts of substituted 3, 5-di-methylbenzenes Magn. Reson. Chem 25 966969.CrossRefGoogle Scholar
Sawhney, B. L., Kozloski, R. K. and Isaacson, P J PN, 1984 Polymerization of 2, 6-dimethylphenol on smectite surfaces Clays & Clay Minerals 32 108114.CrossRefGoogle Scholar
Shabtai, J., Lazar, R. and Oblad, A. G., 1981 Acidicforms of crosslinked smectites—A novel type of cracking catalyst Stud. Surf. Sci. Catal. 828840.CrossRefGoogle Scholar
Suryan, M. M., Kafafi, S. A. and Stein, S. E., 1989 The thermal decomposition of hydroxy- and methoxy-substi-tuted anisoles J. Amer. Chem. Soc 111 14231429.CrossRefGoogle Scholar
Tichit, D., Fajula, F., Figueras, F., Bousquet, J., Gueguen, C., Imelik, B., Naccache, C., Coudurier, G., Taarit, Y. B. and Vedrine, J. C., 1985 Thermal stability and acidity of Al3+-cross-linked smectites Catalysis by Acids and Bases Amsterdam Elsevier 351.CrossRefGoogle Scholar
Urabe, K., Hiroaki, S. and Izumi, Y., 1988 Cation-ex-changed synthetic saponite as a ‘heat-stable’ acidic clay catalyst J. Chem. Soc. Chem. Comm. 15201521.CrossRefGoogle Scholar
Vaughan, D. E. W., 1988 Pillared clays—A historical perspective Catalysis Today 2 187198.CrossRefGoogle Scholar
Vaughan, D. E. W. Lussier, R. J. and Rees, L. V., 1980 Preparation of molecular sieves based on pillared interlayered clays (PILCs) Proc. 5th Int. Zeolite Conf. London Heyden Press 94101.Google Scholar
Williams, A. L., Kinney, R. E. and Bridger, R. F., 1967 Solvent-assisted Ullman ether synthesis reactions of dihydric phenols J. Org. Chem 32 25012505.CrossRefGoogle Scholar